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Preface

Vector analysis, which had its beginnings in the middle of the 19th century, has in recent
years become an essential part of the mathematical background required of engineers, phy-
sicists, mathematicians and other scientists. This requirement is far from accidental, for not
only does vector analysis provide a concise notation for presenting equations arising from
mathematical formulations of physical and geometrical problems but it s also a natural aid
in forming mental pictures of physical and geometrical ideas. In short, it might very well be
considered a most rewarding language and mode of thought for the physical sciences.

This book is designed to be used either as a textbook for a formal course in vector
analysis or as a very useful supplement to all current standard texts. It should also be of
considerable value to those taking courses in physics, mechanics, electromagnetic theory,
aerodynamics or any of the numerous other fields in which vector methods are employed.

Fach chapter begins with a clear statement of pertinent definitions, principles and
theorems together with illustrative and other descriptive material. This is followed by
graded sets of solved and supplementary problems. The solved problems serve to illustrate
and amplify the theory, bring into sharp focus those fine points without which the student
continually feels himself on unsafe ground, and provide the repetition of basic principles
so vital to effective teaching, Numerous proofs of theorems and derivations of formulas
are mcluded among the solved problems. The large number of supplementary problems
with answers serve as a complete review of the material of each chapter.

Topics covered include the algebra and the differential and integral calculus of vec-
tors, Stokes™ theorem, the divergence theorem and other integral theorems together with
many applications drawn from various fields. Added features are the chapters on curvilin-
ear coordinates and tensor analysis which should prove extremely useful in the study of
advanced engineering, physics and mathematics.

Considerably more material has been included here than can be covered in most first
courses. This has been done to make the book more fexible, to provide a more useful book
of reference, and to stimu)ate further interest in the topics.

The author gratefully acknowledges his indebtedness to Mr. Henry Hayden for typo-
graphical layout and art work for the figures. The realism of these figures adds greatly to
the effectiveness of presentation in a subject where spatial visualizations play such an im-
portant role.

M. R. SPIEGEL
Rensselacr Polytechnic Institute

June, 1659
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Chapter 1

A VECTOR is a quantity having both magnitude and direction, such as dlsglacement, velocity, force,
and acceleration.
aLem el

Graphically a Vecfor is represented by an arrow QP (Fig.1) de-
fining the direction, the magnitude of the vector being indicated by
the length of the arrow. The tail end ¢ of the arrow is ealled the
origin or initial peint of the vector, and the head P is called the
terminal point or terminus,

ot

Analytically a vector is represented by a letter with an arrow
over it, as A in Fig.l, and its magnitude is denoted by |A| or A. In
printed works, bold faced type, such as A, is used to indicate the
vector A while lAl or A indicates its magnitude. We shall use this Fig.1

'\-u.l"—--.-—-——-d .
bold faced notation in this beok. The vector OP is also indicated as
OB or OPF; in such case we shall denote its magmtude by OF, |OP]
(34 |0P|

A SCALAR is a quantity having magnitude but @Qdirectian, ¢.g. mags, length, time, temnerature, and

any real number. Scalars are indicated by letters in ordinary type as in elementary alge-
bra. Operations with scalars follow the same rules as in elementary algebra.

VECTOR ALGEBRA. The operations of addition, subtraction and multiplication familiar in the alge-
bra of numbers or scalars are, with suitable definition, capable of extension
to an algebra of veetors. The following definitions are fundamental,

1. Twao vectors A and B are equal if they have the same magnitude and direction regardless of
the pesition of their initial points. Thus A=B in Fig. 2.

2. A vector having direction opposite to that of vector A but having the same magnitude is de-
noted by --A (Fig.3).

Fig. 2 Fig. 3



2 The sum or resultent of vectors A and B is a
vector C formed by placing the initial point of B
on the terminal peint of A and then joining the
initjial point of A to the terminal point of B
(Fig.4). This sum is written A+B, j.e. C=A+B.

The definition here is equivalent to the par-
allelogram law for vector addition (see Prob.3).

Extensions to sums of more than two vectors
are immediate (see Problem 4}

VECTORS and SCALARS

Fig. 4

4. The difference of vectors A and B, represented by A—B, is that vector € which added to B
yields vector A. Equivalently, A—DB can be defined as the sum A+{-B).

If A=D, then A—B is defined as the null or zero vector and is represented by the sym-

bol 0 or simply 0. It hag zero magnitude and no specific direction.. A vector which is not

null is a proper vector. All vectors will be assumed proper un

less otherwise stated.

5. The product of a vector A by a scalar m is a vector mA with magnitude \m\ times the magni~

tude of A and with direction the same as or opposite to

or negative. If m=0, mA is the null vector.

that of A, according as m is positive

LAWS OF VECTOR ALGEBRA. If A,B and C are vectors and m and n are scalars, then

1. A+B = B+A Commutative Law for Addition-

2. A+ (B+C) = (AtBY+ C Associative Law for Addition

3. mA = Am Commutative Law for Multiplicaiion
4. m{nA) = (mn)A Associative Law for Multiplication
5. {m+nr)A = mA‘tnA Distrivutive Law

6. m{A+B) = mA+ mB Distrivutive Law

Note that in these laws only multiplication of & vector by one of more scalars is used. In Chap-

ter 2, praducts of vectors are defined.

These laws enable us to treat vector equations in the same way as ordinary algebraic equations.

For example, if A+B = C then by transposing A = C-B.

A UNIT VECTOR it a vector having unit magnitude, If
A is a vector with magnitude A#0,

e e et
then A/A is a unit vector having the same djrection as
A.

Any vector A can be represented by & unit vector a
in the direction of A multiplied by the magnitude of A.In
symbols, A= Aa.

THE RECTANGULAR UNIT VECTORS i, j, k. An impot-~

tant set of
unit vectors ate those having the directions of the pos-
itive x, y, and z axes of a three dimensional rectangu-
lar coordinate system, and are denoted respectively by
i, and k (Fig.5).

We shall use right-handed rectangular coordinate
systems unless otherwise stated. Such a system derives

Fig. 5
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its name from the fact that a right threaded screw rotat-
ed through 90° from (x to Oy will advance in the pos-
itive z direction, as in Fig.5 above.

In general, three vectors A, B and C which have
coincident initial points and are not ceplenar, i.e. do
not lie in or are not parallel to the same plane, are said
to form a right-handed svystem or dextral system if a
right threaded screw retated through an angle less than
180° from A to B will advance in the direction C as
shown in Fig.6,

Fig. 8 &’rﬂ""‘ B i %
COMPONENTS OF A VECTOR. Any vector A in 3 gt

mengions can be Iepre- z

sented with initial point at the OW

coordinate sysjem (Fie. 7). Let (A1, A, Aa) bhe the : -
rectangular coordinates of the terminal point of vector A
with initial point at @. The vectors Ali, Azj, and Ak
arg called the rectangu-lar component vectors ot simply
component vectors of A in the x, ¥ and z directions re-
spectively. Al, Az and A3 are called the rectangular
components or simply ¢omponents cf A in the x, v and z
directions respectively.

The sum or resultant of A,i, A,i and Aak is the x
vector A so that we can write Pig. 7
A = A+ A+ Ak
R N / 3 2 Z
The magnitude of A is A = [A\ = VA + Ay + A

In particular, the position vecior or radius vector ¢ from O to the point (x,¥,2) is written

r = xi +4) +zk

and has magnitude r = }r[ = vxZ4 y2 + 22

SCALAR FIELD. If to each point (x,y,z) of a region R in space there cortesponds a number or sealar
J then ¢ is called a scalar function of position or scalar point function
and we say that & sceler field ¢ has been defined in R.

Examples. (I} The temperature at any point within or on the earth’s sutface at a certain time
defines a scalar field,

() Plvy,z) = 2y - 2% defines a scalar field.

A scalar field which is independent of time is called a stationary ot steady-state scalar field.

VECTOR FIELD. If to each point (x,y,z) of a region R in space there cotresponds a vector Vix,y,z),

then ¥ is called a wector function of position ot vecior point function and we say
that a vector field V has been defined in R.

Examples, (I} If the velocity _at any point {x,y,z) within a moving fluid is known at a certain
time, then 2 vector field is defined.

) Vix,y,2) = xy%i - %y2°f + x%zk  defines a veetor field,
———

A vector field which is independent oftime is called a siationary or steady-state vector field.



4 VECTORS and SCALARS

SOLVED PROBLEMS

1. State which of the following are scalars and which are vectors.
(a) weight {¢c) specific heat (e) density (g) volume (i) speed
{bY calorie  (d) momentum (f) energy (hy distance (j) magnetic field intensity

Ans. (a) vecior (¢} scalar  (e) scalar  {(g) scalar  ({) scalam
(b) scalar  {d) vector  (f) scalar (k) secalar  (j) vector

2. Represent graphically (@) a force of 10 1b in a direction 30° north of east
(b) = force of 15 1b in a direction 30° east of north.

N N
Yrev—

Unit=51b

L5 P

\,‘3@

a0° )
w b W E

@ Fig.(a) ! Fig.(&)

Choosing the unit of magnitude shown, the required vectors are as indicated above.

2. An automobile travels 2 miles due north, then 5 miles northeast. Represent these displacements
graphically and determine the resnltant displacement (e) graphically, (6 analytically.

Vector OP or A represents displacement of 3 mi due north. N

Vector P@ or B represents displacement of 5 mi north east. . _.

Vector 0Q or C represents the resultant displacement ot
sum of vectors A and B, i.e. C = A+B. This is the rriangle
law of vector addition,

The resultant vector Q@ can also be obtained by con-
structing the diagonal of the parallelogram OPQR having vectors
OF =A and OR (equal to vector PQ or B) as sides. This is the
parailelogram [aw of vector addition.

{a) Graphical Determination of Resultant, Lay off the 1 mile
unit on vector 0Q to find the magnitude 7.4 mi {approximately).
Angle EQQ=61.5°% using a protractor. Then vector 0Q has W

E
magnitude 7.4 m{ and direction 61.5° north of east.
(8) Analytical Determination of Resultans. From triangle QPQ, i Unit=1mile
dencting the megnitudes of A, B, C by A, B, C, we have by 3
the law of cosines
c? = 4% 1 5% - 3AB cos ZOPQ = 3% + 5% - 23)(5) cos 135° = 34 +16V2 = 55.%1

and C = T.43 (approximately).

) A C
By the law of sines, - = - Then

sin ZOQP  sin £ZOPQ
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Asin / 0.707
cin Zogp = SZRLOPQ 3(7 43) = 0.2855 and ZOQP = 16°35".
C .

Thus vector OQ has magnitude 7.43 mi and direction (45° +16°35"Y = 61°35' north of east.

4, Iind the sum or resultant of the following displacements:
A, 10 ft northwest; B, 20 ft 30° north of east; C, 35 ft due south. See Fig. (@)below.

At the terminal point of A place the initial point of B,

At the terminal point of B place the initial peint of C.
The resultant D is formed by joining the initial point of A to the terminal point of C, f.e. D = A+B+C.

Graphicelly the resultant is measured to have magnitude of 4.1 units =20.51% and direction 60°southofE,

For an analytical method of addition of 3 or more vectors, either in a plane or in space see Problem 26,

N ¢ 0
» a0”
A &
W 457 e
"Neo®
e D
Unit=5ft
8
&

Fig.(a) Fig.(5)

5. Bhow that addition of vectors is commutative, i.e. A+B = B+ A. See Fig.(d)above.

I
H

or + ra
and OR + RG

09 or A+HR
00 or B +A

C,
C.

Then A+B = BtA.

6. Show that the addition of vectors is associative, i.e. A+(B+C) = (A+B)} +C.

OF +PQ = 0Q = (A+R),

B ¢
and PQ+QR = PR = (B+C). '

OP +PR = OR = D, i.e. A+{(B+
0Q +QR = OR

1
=

D, i.e. (A+B)+C = D,

Then A+B+Cy = (A+B) + C.

Extensions of the results of Problems 5 and 6 show

that the order of addition of any number of vectors is im-
material, o
R

7. porces F,, F,, ..., F, act as shown on object P. What force is needed to prevent P from mov-
ing %
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Since the order of addition of vectors is immaterial, we may start with any vector, say Fy. To F; add
Fy. then Fﬁ’ ete. The vector drawn from the initial point of F, to the terminal point of Fy is the resultant
R, ie R = F1+F2+F3+FQ+F5+F6 .

The force needed to prevent P from moving is —R which is a vector equal in magnitude to R but opposite
in direction and sometimes called the equilibrant.

8. Given vectors A, B and C (Fig.la), construct () A-B +2C (b 3C ~ 3(2A-B).

(@)

Fig. 1(u)

(&)

g, 1{& Fig. 2483




9.

10.

11.
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An-airplane moves in a northwesterly direction af —-W
125 mi/hr relative to the ground, due to the fact
there is a westerly wind of 50 mi/hr relative to
the ground, How fast and in what direction would
the plane have traveled if there were no wind ?

Let W = wind velocity
= i i 1
Va velocity of plane with wind E—
v, = velocity of plane without wind Unit = 25 mi/hr
Then V, = V% +W or V, = ¥, -W = ¥V + (-W)

¥, has magnitude 6.5 units =163 mi/hr and direction 33" north of west.

Given two non-collinear vectors a and b, find an expression for any vector r lying in the plane de-
termined by a and b.

Non-collinear vectors are vectors which are not parallel to
the same line. Hence when their initial points coineide, they
determine & plane. Let r be any vector lying in the plane of a
ahd b and having its initial point eoincident with the initial
points of a and b at ¢, From the terminal point R of r construct
lines parallel to the vectors a and b and complete the parallel-
ogram ODRC by extension of the lnes of action of a and b if
necessary, From the adjoining figure

0D = x(0A) = xa, where x is a scalar
0C = y(OB) = yh, where y is a scalar,

But by the parallelogram law of vector addition
OR = OD+0OC or r =zxa+tyh

which is the required expression. The vectors xa and yh are called component veciors of rinthedirections
a and b respectively. The scalars x and y may be positive or negative depending on the relative orientations
of the vectors. From the manner of constrection it is clear that x and y are unigue for a glven a, b, andr.
The vectors a and b are called base vectors in a plane.

Given three non-coplanar vectors a, b, and ¢, find an expression for any vector r in three dimen-
sional space.

Non-coplanar vectors are vectors which are not paral-
lel to the same plane, Hence when their initial polnts co-
incide they do not lie in the same plane,

Let r be any vector in space having its initial point co-
ineident with the initial points of a, b and ¢ at @. Through
the terminal point of r pass planes parallel respectively
to the planes determined by a and b, b and ¢, and a and ¢;
and complete the parallelepiped PORSTUV by extension of
the lines of action of a, b and ¢ if necessary., From the
adjoining figuze,

OV = x(0A) xa where x is a scalar
OP = y{OB) = ¥b whete ¥ is a scalar
OT = z(0C) z¢ Wwhete z is & scalar.

1

But OR = OV+VQ+QR = OV+OP+OT or 1 = xatyb+tzc.

From the manner of construction it is clear that x, ¥ and : are unique for a given a, b, ¢ and r.



12.

13.

14.

15.

16.

17.
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The vectors xa, yb and ze are called component vectors of r In directions a, b and ¢ respectively. The
vectors a, b and ¢ are called base vectors in three dimensions.

As a special case, if a, b and ¢ are the unlt vectors i, j and k, which are mutually perpendicular, we
see that any veetor r can be expressed uniguely in terms of i, J, k by the expression r = xi+yj+zk.

Also, if ¢=0 then r must lie in the plane of a and b so the result of Problem 10 is obtained.

Prove that if 2 and b are non-collinear then xa+yb = 0 implies x=v=0.

Suppose x #0, Then xa+yb = 0 implies xa=—yb or a= — (¥/x)b, i.e. a and b mustbe parallelto
to the same line (collinear) contrary to hypothesis, Thus x =0; then yb =8, from which v =0,

If x;a+y,b = x,a+y,b, where a and b are non-collinear, then x, = x, and y, = ¥, .
xaty b= x,aty,b canbe written
xma+yb-(xaty,l =0 or {x)— x)a + {3~ y,0b = 0.

Hence by Problem 12, x,—%,=0, 37—y, 0 of %=, 3 =¥,.

Prove that if a, b and ¢ are non-coplanar then xa +yb+ze = 0 implies x=y=2z=0.

Suppose x=#0., Then xa+yb+ze =0 implies xa = —yb—zc or a= —(y/x)b— {z/x}c. But
~(y/x )b — {z/x)}e¢ is a vector lying in the plane of b and ¢ {Problem 10), i.e. a lies in the plane of b and ¢
which is clearly a contradiection fo the hypothesis that a, b and ¢ are non-coplanar, Hence x» =0, By sim-
ilar reagoning, contradictions are ohiained upon supposing ¥ #0 and =z #0,

I x,a+y,b+ze = xa+yb+z,c, where a, b and ¢ are non-coplanar, ther x,=x,, ¥, =v,,
21: .22 .
The equation can be written (x;-xp)a + (y;~y,b + (z;~z,)c = 0. Then by Problem 14, z, —x, =0,

¥1=¥p=0 zy-2,=0 or x =x, ¥y =y, 7=z,

Prove that the diagonals of a parallelogram bisect each other,

Let ABCD be the given parallelogram with diagonals in-
jersecting at P.

Since BD+a =h, BD = h—a. Then BP = x(b—a).
y(a +h).

But AB = AP + PB = AP - BP,
ie. a = y(ath) —x(b—a) = (x tyla + (y —x}b.

Since AC = a+h, AP

Since a and b are non-cecllinear we have by Problem 13,
x+y =1 and y=x =0, Le. x=y =% and P is the mid-
point of both diagonals,

If the midpoints of the consecutive sides of any quadrilateral are connected by straight lines,
prove that the resulting quadrilateral is a parallelogram.
Let ARCD be the given quadrilateral and P, (), R, 5 the midpoints of its sides. Refer to Fig.(e) below.
Then PQ =2(a+b), QR = z(b+c), RS = 3(e+d), SP = z(d+a).
But at+b+ect+d =0, Then
PG = 3(a+h) = —3(c+d) = SR and QR = 3(bh+c) = —3d+a) = P§

Thus opposite sides are equal and parallel and PQRS is a parailelogram.
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18. Let P, P,, P5 be points fixed relative to an origin O and let ry, r,, T be position vectors from
0 to each point. Show that if the vector equation ayr; + agt, +esr; = § holds with respect to
origin O then it will hold with respect to any other origin (' if and only if A+ aytay = 0.

Let rl, r2 and r’, be the position vectors of P P and P5 with respect to O and lst v be the position
veetor of O with respect to 0. We seek conditions under which the eguation a1r1+ a r + aar3 0 will
hold in the new reference system,

From Fig.(b) below, it is clear that rj=v+ rf.l_. Ty=v+ r;, T;=v+ r'3 so that a;ry + a1, +agrsy = 1]
becomes

_ ' Lt :
3,0+ Gy, + agly = a,l(v+ rl) + “2(‘ + rz) + a3(v + ra)
= (a1+ 32+a3)v + alr:;L + azr; + aar; = 0

The result “1"1 tay, r; + a3r% = 0 will hoid if and only if

(al+ 02+a§)v = f, ie, o+ rzz+ aa = 0.

The result can be generalized,

Fig.ia) Fig.iby

19. Find the equation of a straight line which passes through two given points 4 and B having posi-
tion vectors a and b with respect to an origin O,

Leet r be the position vector of any point P on the line
through 4 and B.
From the adjoining figure,

0A +AP = OP or a+tAP=r, ile. AP=r-a
and DA +AB =0R or a+tAB =h, i.e. AB=hbh—a

Since AP and AB are collinear, AP=fABR o r-a=¢b—a)
Then the reguired equation is

r = a+ t{h-a) ar r = {1-t)a +th

i the equation 1s written (l1—-)a+itbhb—r = 0, the sum
of the coefficients of a, bandris 1—-t+t—1 = 0, Hence by
Problem 18 it is seen that the point P is always on the line
joining 4 and B and does not depend on the choiee of origin
0, which is of course as it should be.

Another Method. Since AP and PB are collinear, we have for scalars m and »:

mAP = =PBR or m{r—a) = n(h—r}

ma + nh L. ,
Solving, r = — which is called the symmesric form.
m+n
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20,

21.

22,

23.
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(¢) Find the posifion vectors r, and I, for the
points P(2,4,3) and Q(1,~5,2) of a rectangular
coordinate system in ferms of the unit vectors
i, i, k. (b) Determine graphically and analyti-
cally the resultant of these position vectors. 00 1,—5,2)

1

(@) t, = OP = OC + CB+ BP = 2i+4j + 3k L e —
f. =00 —OD+DE+EQ = i-5j+2k LGS

2 ST

(#) Graphically, the resultant of r, and r, is obtained
as the dimegonal OR of parallelogram OPRQ. Ana-
Iytically, the resuitant of r, and 1, is given by X

L+tr, = (2i+4j+3k) + {i-5i+2%k) = qA—3 +5k

Prove that the magnitude A of the vector A =
. . R A 2 z
A+ A5+ 4.k s A= vA + 4, + A .
By the Pythagorean theorem,
— 2 R — 2

@Y = 9y + @7
where OF denotes the _magnitug of vector OP, etc.
Similarly, (OQ)° = (ORY + (RQY.

Then (OP) = (ORY + (RQ¥ + (QPY or

2 _ 4z 2 2 _ z z z
A% = A4 A2+ 4D, Le. A = VAT A, H Ay

Given I, = A-2+k, 1,= 9f — 4§ — 3k, r = —i+2j+2%, find the magnitudes of
(ayr,, (yr tr,tr,, () 2r,— 36, 5.

@ || = [—i+2+m| = VDR @7 e @ = 3,

(B) ,tr,tr, = Bi—2f+k) + (2—4j -3k + (—i+2j +2K) = 4i — 4 + Ok = 4i—4i

C lai-gjron]| = AOTH(—er @7 = VB2 = w2,

Then [.'1 +r,tr, t

1

2031 — 27 +k} — 3(2i 45 — 3k} — 5(~1i+2j+2k)
= Bi—4j+2k~—6i +12j +9k +5i -10fj - 10k = 5 —2i + k.

(c} 2r1 -3, - 51'3

Then |2r,~3r,—br,| = lsi—2i+k| = ViBr°+(-2¥ + (1F = 30,
If r = 2i-j+k, K= i+ 3j—-2k, ;= ~2i+j-3k and t = 3i + 2j + 5k, find secalars a,b,c such

that r, = ar, + br, + o1, .

1

We require  3i +2j + 5k a(2l—j +Ek)Y + b +3]—2k) + o(-2i +j -3k

= (Za+b—2c)i +(—a+3b+c)] +{a—2b—-3ec)k.

Since i, j, k are non-coplanar we have by Problem 15,
22 +bh—2c = 3, —a+Bhte =2, a-2h—-3%c =05,

Solving, & =-2, =1, ¢=—3 and ¢, = -211+ £,— 3"3 .

The vector 1, is said to be linearly dependent onr,, r,and r, | in other words r,, 1, I and r, constitute a
linearly dependent set of vectors, On the other hand any three (or fewer) of these vectors are linearly in-
dependent.

In general the vectors A, B, C, ... are called linearly dependent if we can find a set of scalars,
a,b,c,..., notall zero, sothat cA+bB+cC+... =0, otherwise they are linearly independent.
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24. Find a unit vector parallel to the resunltant of vectors r, = 2i + 4j - 5k, I, = i+ 2+ 3k.

Resultant R = r,+1r, = (2i+4j~5k} + (i +2]+3k) = 3i + 6f — 2k.

R=|r| = [si+6-2u] = @+ @+ (2 = 7.

4 RY -
Then a unit veector parallel to B is % = 3—1—-—%-]-—& = %i + %j - %—k .

!.3 G, p 3.2 6.2 .2
Check: Zi+ = - = BB A - g
eck: |21+ o~ k| \/(7) (=2

—ajes

25. Determine the vector having initial point P(xl, Yoo Z)
and terminal point Q(xQ, ¥, Z,) &nd find its magnitude.

The position vector of P is r, = xii +y,i+ 2,k
The position vector of O is r, = x9i + ¥ 0+ 2k,
L T+ PQ = r, or

PQ=r -5 = (xityjvz,B- (xity itz k

SRCHE S I A RN R CHE B}

Magnitude of PQ =P( = Vi, ~ %) + 5, —~ ) + (z, ~2,)°.

Note that this is the distance between points P and ¢J.

Forces A, B and C acting on an object are given in terms of their components by the vector equa-
tions A= Aii + Agj + Aak, B=Bi+Bi+Ak, C=(i+CJi+Ck. Find the magnitude of the

reguitant of these forces.

26.

Resultant force R = A+B+C = (4, + B+ C )i+ (4,+B,+Cj + (Ag+ B +C k.

Magnitude of resultant = /(A1+ B+ C__l)p 1 (At By C2)9 + (A4 B+ C:a)2 . -

The result is easily extended to more than three forces.

27. Determine the angles «, B and - which the vector
© r =xi+yj+zk makes with the positive direc-

tions of the coordinate axes and show that
cos” &+ cos” B +cos®y = 1,

Referring to the fipure, triangle O4P is a right

triangle with right angle at 4; then cos & = [-f—l . Bim-
ilarly from right {riangles OBP and OCP, cos B = %

and cosy = ﬁ Also, |e|=r= viB+y2+a7,
r

TERE T fpa g

x . F4
Then cosOLZ?, cosB'—'%, cos Y = — from
r

o,

which ¢, B,jv can be obtained. From these it follows
that

c059a+00828+c032’}1 = 5 = 1.
r

The numbers cos &, cos 3, cos v are called the direction cosines of the vector OP.

28. Determine a set of equations for the straight line passing through the points Pix , ¥, 2,) and

ey ¥ys 2,)-
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Let r, and 1, be the position vectors of P and () respec-
tively, and r the position vector of any point R on the line
jolning P and Q.

r1+PR=1' or PR=r—r1

1'1+PQ=1' oI PQ =r,—-1,

Byt PR = tPQ where ¢ 1s a scalar. Then r—v, =
t (1'? - rl) ig the required vector eguation of the straight line
{compare with Problem 19}

In rectangular coordinates we have, since 1 = xi + v + 2k,

(xl T yi + k) — (x,i +y itz k)= t{lx,i tyd + 2l - G ity it 7, 1]
or
PR AR CEEAL NN | SR AR I A A I 2,)K]}

Since i, {, k are non-coplanar vectors we have by Problem 15,

X - x 5("9_9“1)’ ¥—¥, = t(yz—y__‘), zg=-z, = t(zz—zl)

1
as the parametric equations of the line, ¢ being the parameter. Eliminating :, the equations hecome

k- % Y=y _ 2= %

Fg = %y Yoa= N1 o= 4y

99, Given the scalar field defined by ¢ (v,y,z) = 3%°z — xy° + 5, find ¢ at the points
@ 0,0,0), @) (1,-22) () (-1,-2,-3)

(@ ¢0,0,0) = 3(0¥(0) — (00 + 5 = 0~0+5 =5
. @) P(1,-2,2) = 30F@ - (D=2 + 5 = 6+8+5 = 19

© Pi=1,-2,-3) = S(-1P(-3) - (D2’ + 5 = -9 -8 +5 = -2

30. Graph the vector fields defined by :
(@ Vix,y) = xi + ¥}, by Vi(x,y)y = —xi—yi, (¢) V{x,y,2) = =l +yi + zk.

(a) At each point (x,y), except (G, 0), of the xy plane there is defined a unigue vector xi+yj of magnitude
Vx_i + }T having direction passing through the origin and outward from it. To simplify graphing proce-
dures, note that all vectors associated with poinis on the circles x2+y? =62 > 0 have magnitude

a. The field therefore appears as in Figure {a) where an appropriate scale is used,

¥
|

Fig.(b}
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32.

34.
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(b} Here each veetor is equal to but opposite in direction to the corresponding one in (a). The field there-
fore appears as in Fig.(b).

In Fig.{a) the field has the appearance of a fluid emerging from & point source O and flowing in the
directions indicated. For this reason the field iz called a source field and O is a source.

In Fig.(b) the field seems to be flowing toward (), and the field is therefore called a sink field and O
iz a sink.

In three dimensions the corresponding interpretation is that a fluld is emerging radially from (or pro-
ceeding radially toward) a line souree (or line sink).

The vector field is called two dimensional since it is independent of z.

(e) Since the magnitude of each veetor is vx® + 42 + z2, all points on the sphere %2+ 424 22 = &2, 2> 0
have vectors of magnitude ¢ assoeciated with them. The fleld therefore takes on the appearance of that
of a fluid emerging from source @ and proceeding in all directions in space. This is a three dimension.
al source field.

SUPPLEMENTARY PROBLEMS

Which of the following are scalars and which are vectors? (a) Kinstic energy, (b) eleciric field intensity,
(c) entropy, (d) work, (e) centrifugal force, () temperature, {g) gravitational potential, (k) charge, (¢} shear-
ing stress, () frequency.
Ans. (a) scalar, (b) vector, (¢} scalar, (d) scalar, {e) vector, (f) sealar, (g) scalar, (A) scalar, (f) vecior

{f) scalar

An airplane travels 200 miles due west and then 150 miles 60° north of west. Determine the resultant dis-
placement () graphically, (#) analytically.
Ars. magnitude 304.1 mi (50v37), direction 25°17' north of sast (are sin 3v1i1/74)

Find the resultant of the following displacements: A, 20 miles 30%souwth of east; B, 50 miles due west;
C, 40 miles northeast; D, 30 miles 60° south of west.
Ans, magnitude 20.9 mi, direetion 21°29' south of west

Show graphically that —(A-B) = —A + B.

An object P is acted upen by three coplanar forees as shown in Fig.(a) below, Determine the force needed
to prevent P from moving. Ans. 323 1b directly opposite 150 Ib force

Given vectors A, B, C and b (Fig.(d) below). Consiruct (a) 3A -~ 2B~ {(C-D}y (b) %C + %(A -8B +2D}).

A
nQQ\b
o /
o
»

1501b

1001k

Flg.(a) Fig.(by



14

3.

38.
39.

490.

41.

42.

43.

44,

43.

48.

47.

48.

49.

50,

51.

52.

53.

4.
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If ABCDEF are the vertices of a regular hexagon, find the resultant of the forces represented by the vec-
tors AR, AC, AD, AF and AF.  Ans. 3AD '

If A and B are given vectors show that {(a) %A+B| < |A| + ]Bl:, (b |A—B] > lA| -|B].
show that |A+B+cl € |al +[B] +icl.

Two towns 4 and B are situated directly opposite each other on the banks of a tiver whose width is 8 miles
and which flows at a speed of 4 mi/hr. A man located at 4 wishes o reach town ¢ which is 6 miles up-
stream from and on the same side of the river as town B. If his boat can travel at a maximum speed of 10
mi/hr and if he swishes to reach € in the shertest possible time what course must he follow and how long
will the trip take?

Ans. A straight line course upstream making an angle of 34°28" with the shore line. 1 hr 25 min.

A man travelling southward at 15 mi/hr obscrves that the wind appears to he coming from the west, On in-
creasing his speed to 25 mi/hr it appears to be coming from the southwest, Find the direction and speed of
the wind. Ams. The wind is coming from a direction 56°18" notth of west at 18 mi/hr.

A 100 1b weight is suspended from the center of & rope
as shown in the adioining figure, Determine the ten-
sion T in the tope. Ans. 1001b

SNSRI T NSNS NN

Simplify 2A+B+3C - {A—2B-2(2A-3R-C) .
Ans. 3A-3B+C

If a and b are non-collinear vectors and A = {x +dy)a+
(2x+y+1h and B = (y—2c+2ya + 2x—-3y—- Db,
find » and v such that 3A = 2B.

Ans, x=2, y=-~1

1661b

The bage vectors a,,a,,a, are given in terms of the base vectors hl, bQ, b:3 by the relations
a, = 2h1+ 3b2—-b3, a, = hi—-2b2+ Zb:_,_, a, = —2h1+b2-—2b3

I F = 3b1~ h2 + 2”9 , express F in terms of a,,a, and a, . Ans. 2a1+ 5a9+ 3a3

o

If a, b, c are non-coplansr vectors determine whether the vectors r, = 2a—3bte, r, = Sa—5b+2c, and

t, = da— 5h+ ¢ are linearly independent or dependent. Ans. Linearly dependent since t,= 5ri— 21‘2 .
If A and B are given vectors representing the diagonals of a parallelogram, construct the parallelogram.

Prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and has one
half of its magnitude.

(z) If O is any point within triangle 4A8C and P, (}, R are midpoints of the sides A8, BC, CA respectively,
prove that OA+ OB +0OC = OP+0Q +OR.
(b} Does the tesult hold if (7 is any point outside the triangle? Prove your result. Ans. Yes

In the adjoining figure, ARCD is a parallelegram with
P and @ the midpoints of sides BL and €D respec-
tively. Prove that AP and AQ trisect diagonal RD at
the points E and F. :

Prove that the medians of a triangle meet in a common
point which is a point of trisection of the medians.

Brove that the angle bisectors of a triangle meei in &
common point. '

Show that there exists a triangle with sides which are
equal and parallelto the medians of any given triangle.

Let the position vectors of points P and (} relative to an origin O be given by p and q respectively. If R is
a point which divides line PO into segments which are in the ratio m:n show that the position vector of R



33.

36.

57.

58.

39,

60,

61,

62.

63.

64,

fi5.

66.

VECTORS and SCALARS 15

. : + . s s .
isgivenbhy r - I and that this is independent of the origin.
mtn
If T,.E,, ..., Ty are the position vectors of masses MMy s Mg respectively relative to an origin O,

show that the position vector of the centroid is given by

moE + mgrg T mply

.
ml-l-m? F o oty

T =
and that this is independent of the origin.

A quadrilateral 4BCO has masses of 1,2,3 and 4 units Iocated respectively at its vertices 4(—1, -2, 2),
B(3,2, -1, €(1,-2,4), and D{(3,1, 2), Find the coordinsies of the centroid. Ans. (2,0,2)

Show that the equation of a plane which passes through three given points A, 8, ¢ not in the same straight
line and having position vectors a, b, ¢ relative to an origin O, can be written
ma + nb t pe

m+ n+p

where m,n,p are scalars. Verify that the equation is independent of the origin.

The position vectors of polats P and () are given by r, =2 +3]-k, r,=4i—3j+2k. Determine PQ in
tetms of i, § &k and find its magnitude., Ans. 20—6f+3k, 7

If A=3i-j~4k, B=-21+4j—3k, C=i+2j—k, find
(@) 2A~B+3C, (b) [A+B+C|, (o) [38-2B+4C|, (d) a unit vector parallel to 3A — 2B +4C.

Ans. (a) 11 -8k (593 (c)v308 (4) SA=2B+4C
v'398

The following forces act on a particle P: F, = 2i + 3j— 5Kk, FQZ —-bi+ j+ 3k, F,= i—-2j +4x, F,= 4j—
3j -2k, measured in pounds. Find (o) the resultant of the forees, (b) the magnitude of the resultant,

—
Anrs. (¢) Zi—-j ()Y V5

In each case determine whether the vectors are linearly independent or linearly dependent:
(o) A=21+j-8k, B=1-4k, C=4i+3i-k () A=1-3j+2%, B= 2i—4fj-k, C=31+2%-k.
Ans. (@) linearly dependent, () linearly independent

Prove that any four vectors in three dimensions must he linearly dependant,

]

Show that a necessary and sufficient eondition that the vectors A =41 tA,i+4.k, B= Bi1+B,j+8:k
Ay 4, 4,
C=C i +C,j+C.k be linearly independent is that the determinant B, B, B, | be different from zero,
¢, C, G
1 2 =

{a) Prove that the vectors A=3i+j -2k, B= =i+3j+4k, ©=4i~2j—6k can form the sides of a friangle.
{b) Find the lengths of the medians of the triangle.
Ans. (B) V6, 5v11a, 5150

Given the scalar field defined by P(x,y,2) = 4yz”+ 3xyz — 2%+ 2. Find (a) A(1,-1,-2), (b) H(0,—3,1).
Ans. (&) 368 (&) -11

Graph the vector fields defined by

{c) V(x,y) = xi-yj, by Vix,y) = vi-x], (e} V(x,y,z) _ xi+yitazk

er2+y2+32



Chapter 2

THE DOT OR SCALAR PRODUCT of two vectors A and B, denoted by A-B (tead A dot B), is de-
fined as the product of the magnitudes of A and B and the cosine

of the angle & hetween them. In symbols,

AB - ABcosO,  PEOTT
Note'that A-B is a scalar and not 2 vectar. )
The following laws are valid:
iI. A‘B = B-A Commutative Law for Dot Producis
~W

2. A-(B+C) = A‘B+AC Distributive Law

3. m(A-B) = mA)*'B = A-(mB) = (A"B)m, where m is a scalar,

4. idi=ji-kk=1, 1-j=ik=ki=0
—_—
5 1f A=Ai+Aj+ Ak and B = B,i + B+ Ak, then
A-B = AB, +AB, + 4,8,
- 42 - A% 2 . 42
A-A =A% = AP+ A0+ A
B-B = B? = BZ+ B + B

1

1 —— "
6. f A'B=0 and A and B are not null vectors, then A and B are|perpendicular. )

L il

THE CROSS OR VECTOR PRODUCT of A and B is a vector € = AxB (read A cross B). The mag-
‘nitude of Ax B is defined as the produect of the magnitudes of

A and B and the sine of the angle & between them. The direction of the vector € = A xB is perpen-

dicular to the plane of A and B and such that A, B and C form a right-handed system. In symbols,

AXB = ABsinfu, 02O%T

where u ig a unit vector indicating the direction of AxB. If A=B, or if Ais parallel to B, then’
sind =0 and we define AXB=0, '

The following laws are valid:
1. (Commutative Law for Cross Products Fails.}
2. Ax{B+CY = AXB + AXC Distributive Law

3. m{AxB) = (mA)xB = AX (mB) = (AxBim, whete m is a scalar.

4. ixi = jxj = kxk =0, 1xj=g)1xk=!i) kxi=g‘)

518 A =Ai+A4,+4k and B = B,i + B,i + Bk, then

16
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i i k
AxB = 14, 4, 4,
 w————

B, B, B

1 2 a
6. The magnitude of AXxB is the same as the area of a parallelogram with sides A and B.

7. If AxB =0, and A and B are not null vectors, then A and B are parallel.
-—R————

TRIPLE PRODUCTS. Dot and cross multiplication of three vectors A,B and € may produce mean-
ingful preducts of the form (A-B)C, A-(BxC) and Ax (BxC). The follow-
ing laws are valid;

1. (A'B)C £ A(B-C)

2. A-(Bx(C) = B-(CxA) = C -(AxB) = volume of a parallelepiped having A, B and C as edges,
ot the negative of this volume, according as A, B and C do or do not form a right-handed 5¥S-
tem., If A = Aji+ A0+ Ak, B = Byi+ Boj+ Bgk and € = Cyi+ Cof + Cyk, then

Al AQ AG
A-BxC) = B, B2 B3
¢, €, C,
“_?;-.éf (BxC) # (AXBYXC (Associative Law for Cross Products Fails)
4. AX(BXxC) = (A-C)B - (A-B)C
(AXB)xC = {(A-C)B - (B-C)A

The produet A-(BXC) is sometimes called the scalar triple product or box produes and may be
denoted by [ABCl. The product Ax (BxC) is called the vector triple product,

In A-(BxC) parentheses are sometimes omitted and we write A- BxC {see Problem 41). How-
ever, parentheses must be used in Ax (BxC) (see Problems 29 and 47).

RECIPROCAL SETS OF VECTORS. The sets of vectors a,h,¢ and a’,b',c’ are called reciprocal
sets or systems of vectors if

ara’ = beb = e-¢ = 1

The sets a,b,c and a',b’,¢’ are reciprocal sets of vectors if and only if

: hxe exa ‘ axh

A = @ ———— K = =2 ¢ T ———_

a-hxe a.bxe ' a-bxg

where a*bxe¢ # 0. See Problems 53 and 54.
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SOLVED PROBLEMS

THE DOT OR SCALAR PRODUCT.

1. Prove A*B = B-A.

AB = ABcos & = BAcos 8 = B-A

Then the commutative law for dot products is valid.

2 Prove that the projection of A on B is equal to A-b, where
I is a unit vector in the direction of B.

Through the initizl and terminal points of A pass planes per-
pendienlar to B at G and # respectively as in the adjacent figure;
then

Projection of A on B = G = EF = Acos & = A'b

3 Prove A(B+C) = A-B+ A C.

Let a be @ unit vector in the direction of A; then
Projection of (B+C)on A = proj. of Bon A + praj. of € on A
{(R+C)-a = BRra + C-a
Multipiving by 4,
(B+(H-Aa
and (B+C)-A

B:rda + C-4a
B‘A + C-A

Then by the commutative law for dot products,

L

A(B+CYy = A'B + AC

and the distributive law is valid.

4, Provethat (A+B)-(C+D) = A-C+A-D+B-C+B-D.

By Problem 3, (A+B)-{C+D) = A (C+DY+ B-(C+D) = A-C +AD +B-C + B-D

The ordinary laws of algebra are valid for dot products.

F 4
5. Evaluate each of the following.
@ i-i = |i] li] cos €® = (HOMD =t
3y 1°x = Ji] |k} cos 90® = (ym© = 0

) k-j = k] |3) cos 90° = (@ = 0
@) §-(2A~Bj+k) = 2-1-3-j+ik = 0-3+0 = -3

I

fey (2=} Bi+k) = 20 (3 +K) ~jr (BiFk) = Giri+2-k—3j"i~jk - 6+0-0-0 =26

6. If A = Aji+ A+ Ak and B = Bji + B,j + B,k, prove that A-B = 4,8 + 4,5+ 4.B,.

1

A'B = (Ai+A 44,0 (B i+B,]+BK)

A+ (B + B+ B0 + A (Bi+ Bl +B.K) + AR (Bl + Bt Bk

AB i1 + 4B, § + A Bk AB.44 4+ A B3 + A Byick + A B ki + A B k-1 + 4Bk k



10.

11.

The DOT and CROSS PRODUCT 19

= AB,+ AR, +AB,

since i-i = j+j = k-k = 1 and all other dot products are zero.

CI A = Ai+Ad+ Ak showthat A = VA-A = VA + 42 + 4D,

A-A = ()M cos0° = A°. Then 4=7/A.A.
Also, AA = (AI+ANTAI0 A T+AG+ ALK
= AMAD + (AN + (A)(A4) = A2+ 4% + A

by Problem 6, taking B = A,

Then 4= VA.-A = '/fii + A7 + A2 is the magnitude of A. Sometimes A-A is written A” .

. Find the angle befween A = 2i+2j—-k and B = Bi-3j +2Kk.

AB=4Rcos &, A=V + (@27 +(-102 =3, B = V(6 + (37 @7 =7
A-B = (2){8Y+ (-3 + (—-1¥(2) = 12—-6-2 = 4

A-B _ _4 = 2 - 51005 and & =79° approximately.

Then cos 7 = —_—
AB {(3(D 21

. If A-B =0 and if 4 and /! are not zero, show that A is perpendicular tc B.

It AR = 4Bcosf =0, then cos &@=0 or &=090°. Conversely, it O=90°, AB = 0.

Determine the value of @ sothat A = 2i+ej+k and B = 4i — 2j - 2k are perpendicular.

From Problem 9, A and B are perpendicular if A-B =0. B
Then A-B = () + (e} -D+{DH(-2Y = 8~-22 -2 =0 for o

1]
o

Show that the vectors A = Si -2j+% B=i-3j+5k, C=2i+j-4k form a right triangle.

We first have to show that the vectors form a friangle. -~

(3)

(2) 3)

(&%) (1

(a} ()]
From the figures it is seen that the vectors will fortﬁ a triangle if

{a) one of the vectors, say (3), is the resultant or sum of (1} and (2),
(b} the sum or resultant of the vectors (1)+(2)+(2) is ZETC,

according as (a) two vectors have a ecommon terminal point or (b) none of the vectars have 2 common terminal
point. By trial we find A =B +C so that the vectors do form s iriangle.

Since A*B = (3)(1) + (-2(-3)+ (1H({(BY =14, A-C = (32 + (=21 + (1}(-4) =0, and
B:C = (1)(2) + (~-3)(1} + {5)(—4) = - 21, it follows that A and C are perpendicular and the triangle is a
right triangle. '
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12. T'ind the angles which the vector A = 3i-—6j +2k makes with the coordinate axes.

Let O, B,’y be the angles which A makes with the positive x,y, 2 axes respectlvely.
Avi = (A¥(1deos & = m cos 0 = T cos O
A-d (Bi—6i+t2K) 1 = Bi-i-6j-i+2ki =3
Then cos @ = 3/7 = 0.4286, and @ = 64.6° approximately.
Similarly, cos B =—6/7, B=148" and cosy= 9/7, ¥=13.4°.
The cosines of &, [‘3, and y are called the direction cesines of A. (See Prob, 27, Chap.1).

13. Find the projection of the vector A=i-2j+k onthe vecior B= 4i —4j+ Tk,

B 4j g 7T 4 . 4. ki
A unit vector in the direction Bis b = 7 = . el L W Sit gk
Va2 + (=07 + (T '
. . . . - |
Projection of A on the vector B = A-b = (i—2j +K)- (31—-61+§k)
4 4 7 19
= — — - =% 4+ — = s
(1)(9) + {2 9) (1)(9) 5
14. Prove the law of cosines for plane triangles.
From Flg.(z) below, B +C = A ot c =A-B.
Then c.C = (A-B) -{(A-B) = A‘A+B-B-2A-B

and c2 = 4%+ B2~ 24B cos (7.

0 B R

Fie.(e) Fig(d) g

15. Prove that the diagonals of a rhombus are perpendicular, Refer to Fig.(b) ghove.

0oQg =0P+Pg = A+B

OR+RP —OP o B+RP=A and RP - A-B
Then OQ-RP = (A+B)-(A-B) = A°-B" = 0, since A=B.
Hence 0Q is perpendicular to RP.

16. Determine a unit vector perpendicular to the plane of A =2i—6j~ 3k and B =4i+3j-Kk.

Let vector C = c1i+ Czj +c3k he perpendicular to the plane of A and B. Then C is perpendicular to A
and also to B. Hence, ’

I
=]

C-A = 2-:1— 6-';2—- 3-3S or N 201— 502 = 3g

2

‘%

C'B = de + 302— €g = 0 ar (2) 4c, + 302
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; ; . _1 _ 1 _ 1, 1
Bolving (I} and (2) simultaneously: G T 5% T~ 3% C=gq (El - -3-1 + K).
c n (Eli - %j + k) 3 5 6
Then & unit vector in the direction of Cig = = = i(?i - ?j + 7k)_

1 1
/ Lo+~ 3+

17. Find the work done in moving an object along a vector r = 31 + 2j — 5k if the applied force is
F =2 -j-Kk. Referto Fig.(a) below.

Work done = {magnitude of force in direction of motion} (distance moved)
= (Fecos By = Fer

= (2i-j-K-@Bi+2-5k = 6-2+5 = 9,

k 3

Fig.(a)
Fig.ib)y

18. Find an eguation for the plane perpendicular to the vector A=2i

+3j +6k and passing through the
terminal point of the vector B = j + 5j + 3k (see Fig.(5) above),

Let r be the position vector of point P, and ¢ the terminal point of B,

Since PQ =B -r is perpendicular to A, (B—1}-A=0 or rrA=B-A

is the reguired equation of the
plane in vector form. In Tectangular form this becomes

i +yj+2k) (2 +3j +6k) = (i +5)+3K)-(20 +3j + 8k
or 2e T3y t6z = (IM2) 4+ (5I(3) 4+ (3)(B) = 35

19. In Preblem 18 find the distance from the origin to the plane.

The distance from the origin to the plane is the orofection of B on A,
A unit vector in direction Ais a = 2 = M_ = Ei + §}- + Ek_
4 V@R @eR e T 7 7

Then, projection of Bon A = B.a = (i+5j+3k)-(%i +%j +$k) = 1(%) 5 5(-:;1) + 3(%) = 5.

20. If A is any vector, prove that A = (A-Di + (A j+ (A IOk,
Bince A= Aji +Agl + Ak,  A-f = A+ Apici + Ak = A,
Similarly, A.j =4, and A.k =4, .

Then A =4 i+ A45+4k = (A-Di+((A-Dj+(A-KK.
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TIE CROSS OR VECTOR PRODUCT.

21. Prove AxB = —-BxA, RO

BxA=D

Fig.(a} Fig.(h)

AXB=C has magnitude AB sin & and direction such that A, R and C form a right-handed system
{Fig.(a) above).

B X A=D has magnitude RA gin & and direction such that B, A and D form a right-handed system
{Fig.{b) above).

Then P has the same magnitude as C but is opposite in direction, i.e. c==D or AXE =-B¥XA,

The commutative law for cross products is not valid.

22 If AxB=0 and if A and B are not zero, show that A is parallel to B.

If AXB sAB sin & u =0, then sin&=0 and & =0° or 180°,

o3, snow that |axB| + [A-B] = al’ Bl
IAxB1Q+ |_»1;-BH2 = |AB sin& ul2+ 5,‘18 cos@|2 - A%R? sin®0 + A2B” cos®l
- 5% = |aPiBf

24. Evaluate each of the following.

(@) ixj =k (f) ixj =10

() =k =1 (g ixk = —kxi = -1

{e) kxi=} (hY (2D x(3K) =6ixk = 61

(@) kxi= -ixk = —i () (3D x(~2k) = —6ixk = 6j

ey Ixi =0 (i) gjxi—-23k = ~2k—3k = -5k

25, Drove that AX(B+() = AxB+ AXC for the
case where A is perpendicular to B and also to
C.

Since A is perpendicular to B, AXB is a8 vector
perpendicular to the plane of A and B and having mag-
nitude AB =in 90° = 4B or magnitude of AB. This
is equivalent to multipiving vector B by 4 and rotating
the resultant vector through 90° to the position
shown in the adjoining diagram.

siatle
B G
P
A

Similarly, AXC is the vector obtained by multi-
plying C by 4 and rotating the resultant vector through
90° to the position shown.

In like manner, Ax (B +€) is ihe vector ohtained




The DOT and CROSS PRODUCT 23

by multiplying B+ ¢ hy A and rotating the resultant vector through 90° to the position shown.

Since Ax(B+ () is the diagonal of the parallelogram with AxB and A»C as sides, we have
Ax(B+C) = AxB + Ax (.

26. Prove that AX(B+C) = AXB + AXC in the gen-
eral case where A, B and C are non-coplanar,

Resolve R into two component vectors, one porpen-
dicular {0 A and the other parallel to A, and denote them
by B, and B, respectively. Then B =B, + B,,.

If &is the angle between A and B, then B.= R aind.
Thus the magnitude of A xB, is 4B sin & the same as
- the magnitude of AXB. Also, the direction of A X B, is
the same as the direction of AxXB. Hence AXB =AxB.

Similarly if C is resolved into two component vee-
tors €, and C,, parallel and perpendicular respectively
to A, then AxC, = AxC.

Also, since B+C = B +B +0,+ Cy = (B+CD+(B, +C,) 1if follows that

AxX(B,+C)) = Ax(B+C),
Now B, and €, are vectors perpendicular to A and so by Problem 25,
AX(B,+C;) = AxB; + AXC,
Then Ax(B+C) = AxB+ AxC

and the distributive law holds. Multiplying by —1, using Prob. 21, this becomes (B+CY x4 = BXA + CxA.
Note that the order of factors in crogs products is important. The usual laws of algebra apply only if prop-
er order is maintained,

i J k
2. I A =A4ji+ Aj+ 4k and B = B+ Boi + Bk, provethat AxB = | 4, A4, Ag
' Bi B. B,

AXB = (A +4Ao] +45K) x (Byi +Bof + Bak)
= Aqdx(Bqi +Bpj + Bgk) + Ao)x(Rqi +Baj + Bzk) + Agk % (Byi + Baj + Bk
= AByixd + 41 Boixj + 41 Byixk + ApByjxi + ApBojxj + AsBgixk + ABakxi + AgRokxj + dpBokxk
. i i k
= (doBs ~ AgB)i + (438, - A1Bgii + (A4Bs — 4Bk = A1 Ay Ag
By By By

28. If A=2i-3 -k and B=i+4i-2k, find (¢} AXB, 3)BxA, (c} (A+B) x (A~ B).

i J k
{ay AxB = (Ci-3j-K)x(i+4J-2k) = |2 -3 -1
: 1 4 =2
-3 -1 - -
=i‘3 [-—jz 1|+k2 51 - 101 + 37 + 13k
4 =2 1 -2 1 4

Another Method.
(Ci-3j-K)xfi+4j-28) = 20> {i +4j -2k) — Bix(i+4fi—-2K) — kx(i +4j—2K)

= 2AXi+Bixj-dixk—-3ixi—-1%xj +6ixk —kxi—4kxji+ 2kxk

0+Bk +4j+3k—0+6i—-J+di+0 = 10i +3j + 11k

[ .
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i i k

{(6) BxA = (i+4j-20) x (21-3j-K = [1 4 =2
2 -3 -1
- -2 1 4
= i b 2'—j ! l+k‘ = —10i — 3j - 11k,
-3 -1 2 -1 2 =3

Comparing with (&), AXB = —B %A . Note that this is equivalent to the theorem: If two rows of
a determinant are interchanged, the determinant chenges sign.

(e A+R = (Z—-3i-k) + ({i+4i-2k) = 3i+3i-3k

A-B = (2A-3j-W) —(i+4—-2kK) = i-Ti+k Lk
Then (A+B)X {(A-B)} = (3i+j-3K) x(i-Ti+k = |3 1 -3
1 -7 1
=i —Er '?l —jl? '?\ + kl? _,1{] = —201 - 6j — 22k.
Another Method.
A+BIX(A-B) = AX (A-B) + BX(A-B)
=_AXA—-A><B+B><A—B><B = p—-AxB—AxB-—0 = —2AXB
= _92(10i +3j +11k) = -20i — 6j — 22k, using (a).

29 1t A=3-j+2%, B=2i+j-k, and C=i-2+2%, find (2) (AxB)xC, by Ax B xC).

j k
8y AXB = 13 -l 21 = —i+Tj+ 5k,
1 -1
i ik
Then {(AxB)YxC = (—i+'?j+5k)x(i—2j+2k] = -1 7 5| = 24i +7j - 5k.
1 -2 2
i 1 k
&y BxC = ‘2 1 -1 = 0i — 5fj —pk = =-35fj - bk.
-2 2
i J k
Then AxX(BxC) = (3F—§+2K) x (-Bj—-5K) = 3 -1 2| = 15i + 151 — 15k,

0 -5 -5

Thus (AXBIXC # Ax{B xC), showing the need for parentheses in AXBxC to avold ambiguity.

30. Prove that the area of a parallelogram with gides A
"~ and Bis |AxB]
Area of parallelogram = A4 |B]|
= |a|sin G |B]
lAxR|.

]

il

Note that the area of the triangle with sides A and
B =1|AxB]. B

31. Find the area of the friangle having vertices at P(1,3,2), 0(2,-1,1), R(-1,2,3).

PQ = (2-Di+(-1-Nj+A -2k = i—-4i—-k
PR (-1 =13+ (2-3}j +(3-2Dk = “2i—-j+k

"
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From Problem 30,

area of triangle = z| PQXPR| = f|(i-4j-K) x (~Zi~j+B)|
1§ K -
= B 1 ~4 =10] = B-5i+1-9Kk| = 3Vi-5P+ AP+ (=8¢ - sv107.
—2 -1 1

32. Determine a unit vector perpendicular to the plane of A =2i — 6§ -3k and B=4i+3j-k.

Ax B is a vector perpendicular to the plane of A and B.
i i k
A¥XB = |2 -6 -3 = 15i — 10j + 30Kk
4 3 -1

AxXB 15 — 10j + 20k 3

A unit vector parallel to AXB is = =i- 2j + %k .

faxB| V157 + (<107 + 30y

Another unit vector, opposite in direction, is (—3i + 2§ — 6k)/7,

Compare with Problem 16,

33. Prove the law of sines for plane triangies,

Let a,b and c represent the sides of triangle ABC
as shown in the adjoining figure; then a+b+e = @. Mul-
tiplying by a x, b X and ¢ ¥ in succession, we find

axb = bxe = exa b

i.e. absin = besind = casin B

o sind _ sinB _ sinC ) "
a b c c

34. Consider a tetrahedron with faces Fy, % Fy,F, .
Let V;,V,,%,Y, be vectors whose magnitudes are
respectively equal to the areas of F, , £, F;, F, and
whose directions are perpendicular to these faces
in the outward direction. Show that V+V,V,+V, = 0.

By Problem 30, the area of & trianguiar face deter-
mined by R and 8 is é‘|R><S

The vectors associated with each of the faces of
the tetrahedron are

V.= FAXB, ¥, = $BxC, V¥, = +CxA, V, = 3(C—A)x(B—A)

Then  Vy+ Vot Vg+V, [AXB + BxC + CxA + (C—A)x(B—A)]

b= M—

[AXB + BxC + CxA + CxB — CxA — AxB + AxA] = 0.

This result can be generalized to closed polyhedra and in the limiting case to any closed surface.

Because of the application presented here it is sometimes convenient to assign a direction to area and
we speak of the vector area. )

356. Find an expression for the moment of a force F about a point P.

The moment M of F about P ig in magnitude equal to F times the perpendicular distance from P to the



26

line of action of F. Then if r is the vector from P
tial point Q of ¥,
M = Fousing) = rFsinf = lrxF|

1f we think of
to the plane of r and F, then when the force F
will move in the directi

venient to define the moment as the vector M = rX

36. A rigid body rotates about a
angulat speed . Prove that t

point P of the body w

direction is that i
advance under {he given rotation.

gince P travels in a circle of radius r sin &, the magni-
= |wxri. Also, ¥
iz such that 1. and

tudse of the linear velocity ¥ is cofr sin &)
must be perpendicular to both @ and r and
v form a right-handed system.

Then v agrees both in magnitude and direction with @ *r,

hence v = @ X 1. The vectorad is called the orgu

TRIPLE PRODUCTS.

27. Show that A« (BxC) is in absolute value equal
to the volume of & parallelepiped with sides
A, BandC.

Let m be a unit normal to paralielogram i,
having the direction of Bx ¢, and let A be the
height of the terminal point of A above the par-
allelogram I.

Volume of parallelepipad

It

if A,B and C do

28, If A=A, +A)+ Ak, B =R,i+B.j+ Bk,

A (BxC)
i i kK
A(BxC) = A- B4 Bo Ra
€4 Co Gp

I

(4,1 + Aoj + A5l

I

a right-threaded screw at P perpendicular
acts the screw
on of rxF. Because of this it is con-

n axis through point O with
he linear velocity v of a
ith position vector r is
v =wxE, whete e is the vector with magnitude w whose
n which a right-handed screw would

A1(BoCy—BaCo) + Ag(Bolia— BCs) + An(B1Co— BaCy)

The DOT and CROSS PRODUCT

to the ini-

F.

given by

lar velocity.

ORI
T g R B
- P

B A IS

B

(height A){area of parallelogram I)
(A-n){ | BxC|}
A-{|Bxc|n} = A-(BxO

ot form a right-handed system, A-n <0 and the volume = ]A- (B x c)h .

C =Cqi + Coj + €k show that
A As A4s

= Bl BQ Bg
Ci CQ CG

- [(BoCg—Balo)i + (BaCq=B1Ca)1 + (B:LCQ"_BQC‘,L)k]

A4
By
C1

Ag
By
Ca

Az
By
Ca
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39. Evaluate (20-3)) - [(i+j-k)»x(3i-k)].

40.

41.

42.

43.

2 =3 4]
By Problem 38, the result is 1 1 -1| = 4,
3 0 -1

Another Method, The result is equal to
(2i~37) - [ixGi=K) + ix(3i -k — kx(3i~1]
= (2i-3j)~[3i><i—i><k+3j><i«-jxk~«3k><i+kxk]
= (2304 -3k -i-3j+0
= (213 (=1-2j-3K) = (2(~1) + (=(=D) + (0¥ (-3) = 4.

Prove that A-(BXC) = B-{CxA) = C-{AxB).

A; As Ag
By Probiem 38, A-(BXC) = By By, By
Cy Gy Cg
By a theorem of determinants which states that interchange of two rows of a determinant changes its
sign, we have

A, A, Ag B, B, B B, By B
By By Bs| = — 141 A dg = €, Co Cs| = B-(CxA)
€, Co Cq €, Cy Ca Ay Ay A
Ay A; A, C, Co Cq €y O Gy
31 BQ 33 = = Bj_ B, Bs = /‘!1 Ag :‘13 = C-{AxB)
€1 G G Ay Az Ag By B, 8y

Show that A- (BxC) = (AxB)-C .

From Problem 40, A-(BXO) = C-(AXB) = (AXB)-C

Occasionally A-(BxC) is written without patentheses as A- Bx (., In such case there cannot be
any ambigully since the only possible interpretations are A: (BxC) and (A: B)xC. The latter however
has no meaning since the cross product of a scalar with a vector is undefined.

The tesult A-BX{ = AXB-¢€ is sometimes summatized in the statement that the dot and cross can
be interchanged without affecting the tesult.

Frove that A-(AxC)Y=10.

From Problem 41, A-(AxC} = (AXA}-C = 0.

Prove that a necessary and sufficient condition for the vectors A, B and C o be coplanar is that
A-BxC = D.
Note that A-Bx € ean have no meaning other than ABx.

If A,B and C are coplanat the volume of the parallelepiped formed by them is zero. Then by Problem
37, A-Bx(C =0,

Conversely, if A+-BXC = 0 the volume of the parallielepiped formed by vectors A, B and C is Zeto,
and so the vectors must lie in a plane,

- Let mExbi+vydtnk, roxi tyef +zk and Ta= 10 +957 + 25k be the position vectors of
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43.

46.

47.

The DOT and CROSS PRODUCT

peints Pifxs,y1,21% Py(%5,¥2, 22) and Po(s,¥s, 2a)-
Find an eguation for the plane passing through Py,
Py and Fs .

We assume that Py, P, and Py do not lie in the same
straight line; hence they determine a plane.

Let r=xi+y]+zk denote the position vector of any
point P{x,y, 2z} in the plane. Consider vectars PP, =
o=y, PPz=13—11 and PAP=1—-11 which all lie in
the plane.

By Problem 43, PP PaPg X PP, = 0 or

(T=1g)e (tp— 1) K{tg—1g) = O
In terms of rectanguler coordinates this necomes
[(x—x)i+ G-yl + (z—zi)k] ¢ [{xp—xg3 + {yp=71)1 + (zg-"zi)k] x [ (xg—x )0 + (Fg—¥221 + (Zs-zi)k] =0

X - X4 3"‘71 z =y

or, using Problem 38, xg—X1 Yo—¥L F2—Fiy T g,

Xg— Xy Ya—¥1 In—n

Find an equation for the plane determined by the points F(2,-1, 1), PQ(S, 2,1} and P3(-1,3, 2).

The position vectors of P, P, P, and any point P(x, ¥, z) are respectively ri= 2i—] +h, rp=3i+2i—k,
rg=-1+3j+2k and r=xi +¥j+:zKk.

Then PPi=T -1, FoPy=1ro—T1, PP, = 13—y all lie in the required piane, so that

(r—14) STy X (T -1} T a
ie. [x —i+ G+ DI+ (z-DK] * [i+3] - 2] x [-31 +4i + K] = 0O
[(x—231 + (y + D EH (z~-1k] - [111 +5) +13k] = ©C

11{x ~2) + 5 +1) + 13-1) = 0 ot 11x + 5y + 13z = 30.

If the points P,Q and R, not all lying on_the game straight line, have position vectors a,b and ¢
relative to a given origin, show that 2 xh + bxe +exa is a vector perpendicular to the plane
of P,Qand R.

Let r be the position vector of eny point in the plane of P, Q asd R, Then the vectors r—a, b—2 and
c —a are coplanar, so that by Problem 43

r—a)+ (p—a) X{c—a) = 0 or (r—a) - (axb +hxe +exa) = 0.

Thus axh + bxc + exa 1s perpendiculiat to r—a and ls therefore pernendiculer to the plane of P,.Q
and R. :

Prove: {8) AX{(BxQC) = B(A' C) - C(A-B), By (AxB)XC = B(A-C)'—- AB-C).
() Let A =Aji+d4g0+45Kk, B =8.i + Byj + Bzk. C =Ci +Cof + Gk

- £ ik
(40 + 4o + A5k) X } Bs By Bg
€1 C2 Ca

(A11+Agj+A3k)><([3263-8369]i + [BgCy=BiCsli + [B1Cp = BoC1} K

Then AX{BXC)

i
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i j k
= Ay Az Az
BQCg‘—BgCQ Bacl— Bng 8182—8261

= (4pB1Co—~ AoBoCy — AsBaCy + AgBiCo)l + (AgByCo AaBaln~ A1B1Co + Ay BoCp
+ (A1B3Cy — 41B1Cg — A5BoCe + AuB3Coik

Also R(A+-C) - C(A*B)
= (Bl + By + Bak) (4104 + AoCo + A5Cs) — (C4i + Cof +C3k) (A, By + Ay Bo + AsBg)
= (ApB1Cp+ A3B;Ca— AC1 B0~ Al B5)i + (BodyCy + BpdgCy—CyA1 By — CpAgBa)]
+ (BgA1C1 + BgAoCo— CaA1 By ~ C34A5R) K
and the result follows.

() (AXB)x € = —€ % (AXB) = - {A(C-B) - B(C-A)} = B(A-C) — A(B-C) upon replacing A, B and
C in (e} by C, A and B respectively.

Note that A X (Bx€) # (AxB) X (', i.e. tho associative law for vector eross products is not
valid for all vectors A, B, C.

48. Prove: {(AxB)+(CxD) = (A-C)(B-D) - (A'D)(B-C).

From Problem 41, X-(CxD) = (XXC)-D. Let X = AXR: then

(AXB) - (CxD {axBYx €} - D = {B(A-C)-AB-C)} - D

= (A-C){B-D)- (A-D)(B-CY, using Problem 47(b),

49. Prove: Ax(BXC) + BX(CxA) + Cx{(AxXB) = 0.

By Problem 4%(u), AX{(Bx)

B{A-C) - C(A-B)
BX{CxXA) = C(B-A) - A(B- )

Cx{AxB) = A(C-B) - R(C-A)
Adding, the result follows.

50. Prove: (AXB) x(CxB) = B(A-CxD) — A(B-CxD) = CA-BxD) - DIA-Bx (),
By Problem 47(z), Xx(CxP) = O(X-D) ~ I¥X-C). Let X=AxB: then
(AXBY X (€CXD) = CAXB-D)~ IAXB: O)
= C(A-BXD)—D(A-ﬁXC)
By Problem 47(3}, (AxBYx Y = B(A-Y)—~ A(B-Y). Let Y=OxD; then
(AXB) X (CxD) = B(A-CxD)— A(B-CxIN

31, Let PQR be a spherical friangle whose sides p.q.r are arcs of greaf circles. Prove that
sin? _ sinQ _ sinR

sin p sin ¢ 8in r

Suppose that the sphere (see fizure helow) has unit radius, and let unit vectors A,B and C be drawn
from the center O of the sphere to P, Q and R respectively. From Problem 50,

€1y (AXB) x {(AxC) = {(A-BxA
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A unit veetor perpendicular to AXB and AXC is A,50
that {1} becomes

(2} ginr sing sin P A = (A-B=xCYA or
{3 ginr sing sin? = A.BXC

By cyelic permutation of p.g.r, P,O,R and A, R,C we
obtain

@ sinp sinr sinQ = B-CXA
{5} ging sinp sinR = C-AXB

Then since the right hand sides of (3), {4y and (5) are
equal (Problem 40)

sinr sin g sin P = sinp sinr sin ¢ = sing sinp sin R

_ _ sinP _ singQ _ sink
from which we find sinp sin g sin r

This is called the low of sires for spherical triangles.

 Prove: (AxB)- (BxC)x(CxA) = (A-BxCy.
By Problem 47(a), Xx(CxA) = C{X-A) ~ A(X-C). Let X=BxC; then
(BXC) X (CxA) = CA%XC-A) - ABXC-0)
= CABXC) — AB.CxC) = C{A-BXO)
Thus (AXB)-(BX() X (CxA) = (AXB):C(A-BxO)
(AXB-C)(A-BXC) = (A-Bx¢Cf

i]

: bxe ; b .
. Given the vectors a = X, b= X2 and ¢ = axd , show that if a-bx¢ # 0,
arbxc a-bhxce arhxe
(@y aa = b'-b = ¢rec = 1,

() a*h = a'c =0, H-a =HW-¢c =0, cta = ¢"b =0,
(c) if a-bxe =V then a-¥xe = 1/F,

(d) a',b’,and ¢’ are non-coplanar if a,band ¢ are non-coplanar.

bx ¢ a-bxc

i
[+ a-azaa'a = — = 1
(e a‘bxe arhxe
b;b_bh,_b_ca_h-cxa_abxc_l
a-bxe a-bxc ahxe
’ { x b c.axh a.bxc
I:-CZC-(‘,:C-—- = - o= -—:.—1

a-bhxce a-bxe a‘bxe

hxe b-bhxe bxh-e
By #B # had = hr ——— = - = =0
(5 arbhxe arhxe arbxc

similarly the other results follow. The results can also be seen by noting, for example, that a’ has
the direction of hx ¢ and so must be perpendicular to both b and ¢, from which d-bh=0 and #-c=0,

From (a) and (&) we see that the sets of vectors a, h,c and a',n ,c are reciprocal vectors. See
also Supplementary Problems. 104 and 106.
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Exc cxa axbh
() d= ——, ¥- 27, - 2XD

V ¥ vV

;0 ¢+ (bxed-(exa)xiaxh) {@xb).(hxe)xiexa)
Then a-bxc¢ = & L =V AR AR

ve ve
(a+bxcy |8 1 ]
e T 5 < — using Problem 52,
v V- ¥V

[}

(d) By Problem 43, if a,b and ¢ are non-coplanar a-bxe # 0. Then from part {ey it follows that
i ! ! ’ ! !
a-bxe # 0, sothat 2,5 and ¢ are also non-coplanar.

54. Show that any vector r can be expressed in terms of the teciprocal veetors of Problem 53 as
t o= (redya+ (r-thb+ (r-¢le.

From Problem 50, BACxDY— A(B - CxD) = CABxID)—D{A-Bx )

ﬂ]}-CxD} _B(A-Cxﬂ} CABx D)

— + S
Then b A-BxC A BxC A.-BxC

Let A=a, B=b, C=¢ and D =r. Then

F*Bxe + r-cxabJr r-axhc
r = a —_——— -
arhxe ahxe arhxc
_ l'(_bxc N cxa b+ axh
B a-bxc)a r (a-hxc) r (a-bxc)c

= (r-a’)a + (r-lf)b + (r-c’)c

SUPPLEMENTARY PROBLEMS

33. Evaluate: {(a)} k-(i+j), (BY {1—2K)-(j + 3k}, {e} (20 —j+ 3K)-(3i + 2j — k).
Ans. (2}0 (Y —6 ()1

56. I A=j+3i—2k and B =4i— 2j + 4k, find:
@) A-B, (04, (c)B, (@) [3A+2B], (e) (2A+B)-(A—2R).
Ans. (@) =10 )14 ()6 (d) V150 (e) —14

57, Find the ungle hetween: {2) A =3i+2j—6k and B = 41—3j+k, (B)C =4i—2j+4k and D = i—6j—2k.
Ans. (a) 90° (B) arc cos 8/21 = 67°36'

58. For what values of o are A = 2i—2j+k and B = Zei+aj—4k perpendicular? Ans, a=2, —1

3%, Find the acute angles which the line joining the points ¢1,—3,2) and (3,—5,1) makes with the coordinate
axes.  Ans. arc cos 2/3, arc cos 2/3, arc cos 1/3 or 48°12', 48°12, 70°32"

60. Find the direction cosines of the line joining the points {3,2,—%) and (1,-1,2).
Ans. 2/7,3/7,—8/T or —2/7,—3/7,8/7

61. Two sides of a triangle are formed by the vectors A = 3i+6j—2k and B = 4i—j+3k, Determine the angles
of the trlangle.  Ans. are cos 1475, arc cos V36ATB, 90° or 36°4', 53°56", oc®

62. The diagonals of a parallelogram are given by A =3i—4j~k and B = 2i+3j—6k. Show that the parallelo-
gram is a rhombus and determine the length of its sides and its angles, .
dns. 5V3/2, arc cos 23/75, 180° — arc cos 23/75 or 4.33, 72%', 107°%52'



92

63.
64.
65.

G6.

67.
68.
69.

70.

71,
2.

3.

kL

5.

76,

.

8.

ki

80.

81.

82.

The DOT and CROSS PRODUCT

*Find the projection of the vector 2i—3j+6k on the vector 1+ 2j+ 2k . Ans, 8/3

Find the projection of the vector 41 — 3§ + k on the line passing through the points (2,3,—1) and (~2,—4,3).
Ans. 1

fA=4i—j+3 and B= —2i+j— 2k, find a umit vector perpendicular to both A and B.
Ans. T(i—21—2kY/3

Find the acute angle formed by two diagonals of a cube. Ars, arc cos 1/3 or 70°32
F'ind & unit vector parallel to the xy plane and perpendicular to the vector 4i—3j+k. Ans. T (3i+45)/5
show that A = (2i—2]+k)/3, B = (i+2j+2K)/3 and C =(2i +j—2k)/3 are mutually orthogonal unit vectors.

Pind the work done in moving an object along a straight line from (3,2,—1) to (2,—1,4) in a force field given
hy F=4i—3j+2k. Ans. 15

Let F be a constant vector force field. Show that the work done in moving an object arcund any closed pol-
ygon in this force field is zero.

Prove that an angle inscribed in a semi-circle is a right angle.
Let ABCD be a parallelogram. Prove that AB% + B02 + CD? +. DA% = AC? + BD”,

If ABCD is any quadrilateral and P and J are the midpoints of its diagonals, prove that
AB% + BC? + CD? + DA? = AC?+ BD? + 4PQ°
This is a generalization of the preceding problem.

{z) Find an equation of a plane perpendicular to a given vector A and distant p from the origin.
¢b) Express the equation of (a} in rectanpular coordinates.
Ans. (@yrm=p, where n = A/A; (D) Agx + dpy Agz = Ap

Let 14 and 1o be unit vectors in the xy plane making angles ¢ and [ with the positive x-axis.
(a) Prove that r4= cos® i + sind j, rg=cosB i+ sind i.
b} By considering rq-To prove the trigonometric formulas

cos (@ —P) = cos® cos P+ sind sinB, cos(@+P) = cosd cosP—sind gin B

Let a be the position vector of & given point (xy,74,2), and T the position vector of any point (x,¥,z). De-
scribe the locus of ¥ if {a) |r—al =3, (b)) (r—aYa=90, () r—a).-r=20.
Ans. {a) Sphere, center at {x;,y1, 71) and radius 3.

{6) Plane perpendicnlar to a and passing through its terminal point.

{¢) Sphere with center at (xl/z, y1/2, z1/2) and radins %Vx§1+ yi+ zf, or a sphere with a as diameter.

Giventhat A = 3i+j+2k and B = i—2j—4k are the position vectors of points P and ) respectively.
(#) Find an equation for the plane passing through @ and perpendicular fo line PQ.

(b) What is the distance from the point {—1,1,1) to the plane ?

Ans. (o) f—BY-{A—B) = 0 or 2x+3y +6z = —28; (b3 5

Evalnate each of the following:
(@) 20 x (31— 40, ) A +25)xk, (2) (2—4k)={1+2}), (dy (41+1—2K)x (i +K), (e) (2l +]—K)=(3i—2j+4k).
Ans. (2)—8i—6k, (b)2i—j. {e)Bi—di+4k, (@yi—101—3k, (e} 2i—11j—"Tk

¥ A=-38i—1—2k and B = 2i+3]+k, find: () JAxBl, (»)(A+2B)x{2aA—HB), (c) [(A+BYx{A—R)|,
Ans. (a) V198, (b} —251+35j—55k, (c) 2V195

If A=i—2j—3k, B=2i+j—k and C =i+3j—2k, find:

() |[{AxBiyxCl, (e) A- (BxC), (e} (AXB) x (B xO)

(b 1A x (BxCYH, (d) (AxB}-C, {H (AxB)B-C)

Ans. (a)B5v36, (B)3v10, (c)—20, (d)—20, <{e)—401—20j+20k, ({f)351—35j+35k

Show that if A# 0 and both of the conditions (s} A«B = A-C and () AxB = AxC hold simulianeously
then B =, but if only one of these conditions holds then B # C necessarily.

Find the area of a parallelogram having diagonals A = 31 +{—2k and B = i—3j+4k. Ans. 5v3
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83. Find the area of a triangle with vertices at (3,~1,2), (1,-1,-3) and (4,~3,1). Ans. %vlss

84.

85.

86.

87.

88

85

+

90.

91.

82,

94,

95.

98,

97,

98.

99,

100,

101,

If A=20+j—3k and B =i—2J+k, find a vector of magnitude 5 perpendicular to both A and B
+ %3_ A+ +k)

Ans,

Use Problem 75 to derive the formulas
sin(@-f) = sint cos B — cos®sinB,  sin (@+ By = sind cosP + cos® sinP

A force given by F = 31 + 2§ — 4k is applied at the point (1,~1, 2). Find the moment of F about the point
(2,—1, 3, Anrs. 2i—7]— %

The angular velocity of a rotating rigid body about an axis of rotation is given hy @ =4i+j—2k., Find the
linear velocity of a point £ on the body whose position vector relative to g point on the axis of rotation is
2i—3i+Kk. Ans. —5i — 8j — 14k

Simplify (A+B)- (B+C)x (C+A). Anrs. 2A-BxC

A-a A*bh A-c
Prove that (A-BxCla.hxe) = B.a EB:.b B.c
C.-a Cb C-c

Find the volume of the parallelepiped whose edges are represented by A = 2 — 3j+4k, B =1+3j—k,
C=2i-7+2k, Ans, T

If AcBxC =0, show that either (e) A, B and C are coplanar but no two of them are collinear, or (b) two
of the vectors A,B and € are collinear, or {e) all of the vectors A, B and C are collinear.

F'ind the constant @ such that the vectors 2i~j+k, 1+2j—3k and 3i+taj+5k are coplanar. Ans, a = —4
I A=xa+yb+ zic, B=xa+yb+ e and C =x,a * ¥ b +z5¢, prove {hat

X3 Y1 2
A'BxC = (x, % =z, (a-bxe)

Tz Yo #g

Prove that a necessary and sufficient condition that Ax(BxC) = (AxB)xC is (AXC)x B=10, Dig~-
cuss the cases where A-B =0 or B-C=0.

Let points P, ¢ and R have position vectors t,=3i—-2j—k, r,=i+3j+4k and r,=2i+j—2k zelative to

an origin O, PFind the distance from P to the plane OOQR. Ans, 3
Find the shortest distance from (6,—4,4) to the line joining (2,1,2) and (3,—1,4). Anps. 3

Given points P(2,1,3), 0(1,2,1), R(—1,—2,—2) and 5(1,—4,0), find the shortest distance between lines Pg and
RS.  A4ms. 3v32

Prove that the perpendiculars from the vertices of a triangle o the opposite sides (extended If necessary)
meet in 2 point (the orthecenzer of the triangle).

Prove that the perpendicuiar bisectors of the sides of a triangle meet i a point (the eircumcenter of the tri-
angle), )

Prove that (A xB)-(CxD) + BxxCY-(AxD) + {CxA)-(BxD) = 0.

Let POR be a spherical triangle whose sides p.g.r are arcs of great circles. Prove the law of cosines for
sphetical triangles,

Cosp = cosq cosr + sing sinr cos P

with analogous formulas for cos g and ces r obtained by eyclic permutation of the lefters.
[ Hint: Interpret both sides of the identity (A xK)- (AxC) = (B CI(A-A) — (A~ B A).}
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102. Find & set of vectors reciprocal to the sef 2i+3j—k, i—3j—2k, —1+2j+2k.

2 1 8 T 7 ., b
Ans. 21+ik, —Si+j—ok, —giti-g
ns. Si+gk, —giti—g giti—3k
103, If a'= bxe 7o ©X2 . ang o= AXD hrave that
a-hxe a-bxe ahxe’
bfx c-‘ CIX af af w b!
a =, I =T ¢ = t [ F;
a-hxe a-bxc a-bxe

104. 1f a,b,c and a b, ¢’ are such that
af»a = bvh = ¢he = 1
a“h = ac = b a = bhc = c¢a =¢"h =0

prove that it necessarily follows that

¢+ . bxec ;. €xa o = gaxh
arhxe ' a-bxc’ a-hxe

105. Prove that the only right-handed self-reciprocal sets of vectors are the umnit vectors i,j,k.

106. Prove that there is one and only one set of vectors reciprocal to a given set of non-coplanar vectors a, b, e.



Chapter 3

ORDINARY DERIVATIVES OF VECTORS. Let R{u)
be a vector depending on a single scalar variable u,
Then

= a -
AR _ R{u +Au) — R{w) AR = Ria+8u) — B

Dy Dy

where Az denotes an increment In & (see adjoining
figure), 0

The ordinary derivative of the vector R(u) with respect to the scalar u is given by

dR R AR - lm Rz +Au) — R(w)

—= = lim ==
du Au—-0 Ay A0 A

if the limit exists.

Since j—R is itself a vector depending on u, we can consider its derivative with respect to u. If

i
this derivative exists it is denoted by W In like manner higher order derivatives are described,
ul.

SPACE CURVES. If in particular R(z) is the position vector r(zx) joining the origin O of a coordinate
system and any point {x,y, 2}, then

r{w) = =(uyl + y(u)j + z(n)k
and specification of the vector function Hu) defines x, v and z as(functions of u_;

As u changes, the terminal polnt of r describes
& space curve having parametric equations

x=x(m}, y=yu), z-=zk)
Ar  ru+Au) — rw)

Then = is a vector in the di-
Au Au Ar  dr
rection of Ar(see adjacent figure). If Iim — = &F
Au—p Aﬂ du

exists, the limit will be 8 vector in the direction of
the tangent to the space curve at {x,¥,2)and is giv-
en by

dr dx dy  dz

du dui u z;';k

If u is the time ¢, gf represents the velocity v with

g
which the terminal point of r describes the curve. Similarly, -dl = ar represents its acceleration a

dt  di2

along the curve.

35
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CONTINUITY AND DIFFERENTIABILITY. A scalar function Huy is called continuous at u if
&lim du+Au)y = Pu). Equivalently, d(u) is continu-
40

ous at u if for each positive number € we can find some positive number 3 such that

lu+Buy — d@)| < € whenever |Au] < 5.

A vector function Ru) = Ra(u)}i + Ry(u)i + Ro{u)k is called continuous at » if the three scalar
functions Ry(u), Ro(u) and Ro(u) are continuous at z or if &lim Riu +Hw) = R(u). Equivalently, B (u)
L]
is continuous at u if for each positive number € we c¢an find some positive number & such that
1R(u. +Am) — Riw) 1 < € whenever |Aul < &.

A sealar or vector function of u is called differentiable of order n if its nth derivative exists. A
function which is differentiable is necessarily continuons but the converse is not true. Unless other-
wise stated we assume that all functions considered are differentiable to any order needed in a par-
ticular discussion.

DIFFERENTIATION FORMULAS. if A, B and C are differentiable vector functions of a scalar u, and
¢ is a differentiable scalar function of u, then

dwem - 8
2 Lam) - a- 92 A.®
- —_
3- ;—(AXB) = Axi—I: + %xB
o dom : fi:é‘i’ -
£ {Ax(BxC)} = Ax(Bx --) + Ax(ﬁB xC) + %ﬁé x (BX C)

The order in these products may be important.

PARTIAL DERIVATIVES OF VECTORS. If A is a vector depending on morte than one scalar vatiable,
say x,v,z for example, then we wtite A = A(x,y,z). The
pattial derivative of A with tespeet to x is defined as
oA . Amtix, y,2) ~ Axy.2)

— = lim
Ox M- Ax

if this limit exists. Similarly,

JA . Alx, ythy, ) — Alxy.2)

— = lim

dy Ay=o Ay

CLY Ay, s +tAz) — Alxy.3)
= lim

E ﬂz—u 1] AZ
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are the partia] derivatives of A with respect to y and z respectively if these limits exist,

The remarks on continuity and differentiability for functions of one variable can be extended to
functions of two or more variables, For example, d(x,y) is called continuous at (x,y) if
lim @ (x+Ax, y +Ay) = ¢bix,y), or if for each positive number € we can find some positive number
Ax—0¢
Ay—0

S'such that |a(x+Ax, v +0y) — ¢ (s, y)| < € whenever |Ax| < § and |Ay| < 8. similar defi-
nitions hold for vector functions.

For functions of two or more variahles we use the term differentiable to mean that the function
has continuous first partial detivatives. (The term is used by others in a slightly weaker senge,)

Higher derivatives can be defined as in the caleuius. Thus, for example,

oA . 9 BA A _ 3 ,°A %A 9 GA

Tt T W e 3 T 'y 32 T 30320
°A _ B (oA, A _ 3 2A, A _ (39
9% Oy Bx Sy ’ ay dx Ey' dx "’ Ox Bz2 Ox  Bz7
) ) - 3°A 3°a
If A bas continuous partial derivatives of the second order at least, then e e v ox’ i.e.the
order of differentiation does not matter, * oy yox

Rules for partial differentiation of vectors are similar to those used in elementary calculus for
scalar funetions, Thus if A and B are functions of %,v,z then, for example,

1 9 A my L A.9B QA

1 Bx(AB} - Aax +axB

)

C 3 _ 9B . 24

%2. 3x(AXB) = Ax_ax + BxXB

i

% o 3,3 3B _ 3A
3 5 5AD = g iam) - {" 3 3. B
1

!

> 2
A SB , 2A BB CA 9B ¢ A

Ir

3yox ~ By Ox | dx Jy | 3yox Br OO

DIFFERENTIALS OF YECTORS follow rules similar to those of elementary caleulus. For example,

LIt A=A +A0+4k, then dA = dAi+dAj+ dAk

2. _d(A-B) = A-dB + 4JA-BR

3. d(AxB) = AxdB + dAxD

CA dA JA -
QA“ A(x,y,z}, then dA = gﬂdx + ad}f + ga’z, etc.w

-
S e —— e et )

DIFFERENTIAL GEOMETRY involves a study of space curves and surfaces. If € is a space cutve

defined by the function r{ux), then we have seen that dr is a vector in

. du
the direction of the tangent to C. If the scalar  is taken as the arc length s measured from some fixed

point on €, then % is & unit tangent vector to  and is denofed by T (see diagram below). The
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rate at which T changes with respect to s is a mea-

sure of the curvature of € and is given by %’% . The

direction of dT at any given point on € is normal to

&
the curve at that point (see Problem 8y, H N is a
unit vector in this normal direction, it is ecalled the

principal normal to the curve. Then % = kN, where

« is called the curvature of C at the specified point.
The quantity o = 1/x is called the radius of curve-
ture. .

A unit vector B perpendicular to the plane of T and N and such that B =T xN, is called the bi-
normal to the curve, Tt follows that directions T,N,B form a localized right-handed rectangular co-
ordinate system at any specified point of €. This coordinate system is called the trihedral or tried
at the point. As s changes, the coordinate system moves and is known as the moving trikedral.

A set of telations involving derivatives of the fundamental vectors T,N and B is known collec-
tively as the Frenei-Serret formulas given by
dT IN dB

2 = kN, 5= =7TB—«T, =+ = —7N
ds Y s K ds i

where 7 is a scalar called the torsion. The quantity o= 1/7 is called the radius of torsion.

The osculating plane to a curve at a point P is the plane containing the tangent and principal
normal at . The normal plane is the plane through P perpendicular to the tangent. The rectifying
plane is the plane through P which is perpendicular to the principal normal,

MECHANICS often includes a study of the motion of particles along curves, this study being known
. a8 kinematics. In this connection some of the regults of differential geometry can he of
value,

A study of forces on moving objects is considered in dvaemics. Fundamental to this study is
Newton's famous law which states that if F' is the net force acting on an object of mass m moving
with velocity v, then

d
F = —(mv
dt (mv)

where mv is the momentum of the object, Iim is constant this becomes F = m(é—: = ma, where a is
the acceleration of the object.
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SOLVED PROBLEMS

1. I Riz) = x{u)i +y(u}i +z(u)k, where x,y and z are differentiable functions of a scalar u, prove
dR _dx,  dy. d:

that F (El + tfuJ + Ek .
dR _ o R +8) — Riu)
dit BDu—0 Ny
IR E7CR AT RS TURIA0S) RAICEAS) AN EXO RO BRI A
A0 Ay
o o xmtDuy — x(w) . oy — y@) . s +Du) — z(w)
= A P tr Aa U N K
dx dz

= oy 4z
- dui + duj * duk

2 =
. . . . dR dR dR R
2. Given R = sinii + cost + tk, find (a) 2%, (b) 75, (o) |;,?.|, (d) [FE' .

( d_R'"‘({"ﬁ'“"i( £'+£(£)k-cs' intj +k

a} P d.e(sm 2! ., (cos Y3 o = costi — sintj

py SRR d .
() G = U ) = Flcosoi — ——(sin )] (& = —sint i — cost ]
(e} |dd—l:| = Viecos)2 + (—sin)? + (1)2 = v2

IR — -

@) |d:2| = Vi—sinn? + (—cost)” = 1

3. A particle moves along a curve whose parametric equations are x = e't, y =2cos 3¢, z = 2sin3t,
where t is the time.
{a) Determine its veleocity and acceleration at any time.
(b) Find the magnitudes of the velocity and acceleration at ¢ = 0.

{z) The position veetor r of the particle is r = xi+ yj+zk = e~tl + 2cos 3t i+ 2s3in3t k.

Then the velocity is v = ? = —e 'ty - Gsin3tj + 6ecos3t k
£
L. dr e . .
and the aceceleration is a = F = e Y[ — 18cos3tj — 18sin3tk
2
ar , &y .
(6y At t =0, ;!Wc = —i + 6k and E;g =1 — 18j. Then

magnitude of velocity at ¢ = 0 is V(112 +(8° = vay
magnitude of acceleration at £= 0 is V(12 + (—18¥ = V325; .

4. A particle moves along the cutve x = 2:2, ¥ =2 4, z =3t — 5, where ¢t is the time. Find the
components of its velocity and acceleration at time £ =1 in the direction i — 3j + 2k .
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Velocity = X = A {o2{ + (7 —45)j + (3t — BYk]
dt dt
= 4¢f + (2t —4)j + 3k = 4i — 2§ + 3k at £t =1,
i— i—3j+
Unit vector in direction i — 3j + 2k is ! M._ = 1 B+ 2k
Ve ()2 (2F V1a
Then the component of the velocity in the glven direction is
(4i — 2§ + 3Ky ~(i — 3j + 2I) (4)(1y + (—2){=3) + (3(2) 16 8v 14
V14 B V14 V14 7
2
Acceleration = %ﬁ—; = —g;-(%) = —d%[fhi +(2t—4)j + 3k) = 41 +2j + 0k.
Then the component of the acceleration in the given direction ia
(41 + 2] + Ok)- (i — 3] + 2K} _ 1y + (2)(=3) + (0y{2) _ ~2 —v 14
/14 V14 V14 7

5. A curve € is defined by parametric equations x =x(s), ¥ =y(s), z =z(s), where s is the arc
length of £ measured from a fixed point on C. ifr is the position vector of any point on €, show
that dr/ds is & unit vecfor tangent to C.

dr d, . . dx, dy dz .
—_— = . + = .— + + — = =
The vector s - (=i + i + 2k o1 dsj dsk is tangent to the curve x= x(s), ¥=v {8),
z = z{s), To show that it has unit magnitude wg note that
dr i _ /;igc 2 dre, dzva _ A&P+@nieds® Lo
] ds ] (ds) * (ds) i (dfs) 1/ (ds)* 1

since (ds¥ = (dx)? + (dy)? + (dz)? from the calculus.

6. (a) Find the unit tangent vector to any point on the curve x = 241, y=4-3, z = 2t% — Bt .
(b} Determine the unit tangent at the point where £=2,

fa) A tangent vector to the curve at any polnt is

% &d—a[(:g+1)i + -3y + (2P—60k] = i+ 4 + 46k
The magnitude of the vector is 1 j—:| = ViR + 42+ (s —6F.

26i + 4 + {4tk
V(22 + (42 + (4f— 6%

Then the required unit tangent vectoris T =

R dr ds dr/dt dr
Note ¢ =i = -, T = = — .
ote that since ] 7 ﬁ & s /dz s
i + 45 +
(b3 At t=2, the unit tangent vector is T = —41———-u-l-i-— = EI + gj + l].(.

Vg rap+oe o0 8

7. If' A and B are diffetentiable functions of a scalat u, prove:

d B dA

(A-B) = A da
du

L 4 - dB _ dA
T + T B, & du(AXB) Axdu + Tn xB

(@)



d
a) — (A =
()du( B)

lim

Au—o

lim

Fat T

im

Aag=0

Another Method. Let A = A0 + Af + Agk,

VECTOR DIFFERENTIATION

(A+AA-B+AB) — AR

Au _
AAB + MA-B + AACAB
A%
AB . NA JaY.\ dB |, dA
. —=.B + =2.AB = A.T= +Z2.p
A Jat ¥ Ay * fuy du du

B = By + B,j + Byk.

L AB) = L 4B, + 4B, + AgB)
du du

dB,

Then

dB dB d4 dA4 44 dB
= (A4 —1 + 292, 209y 4+ (2R, + 2R, + ZZ8RYy = A2 4+
(103:1 Azdu Aﬂdu) (du . dun  ° du.ﬁ9 du
) -d—(AxB) - Hm A+AM)x(B+AB) — AxB
du L= Bau
- g AXOB + AAXB + AAxAB
D=0 At
=  Um Ax—-&E+A—AxB+%x&B = Axd—B+iéxB
du~0 M Na Ay ds  du
Another Method, i ; K
Liaxsy = L4, A, 4q
di du
Bi B-z Bg
Using a theorem on differentiation of a determirant, this hecomes
i i k i i K
dA;  ddy  ddg| B dA
41 A2 As * du du du B Ax du * du B
dR 4B dB
&y, dbs  dbp
du du dy B1 B2 B3

8. If A=52i+s—:°k and B =sin¢i — coszj, find (G)%(A- B), (b)‘%(AxB), (c)%(A’A).

@) i““‘“’

It

A 2B

dt

; 2A

-B
dt

(58°i + ti — £°K) - (cost i + sinr §)

dA
du

41

+(oti + j — 36°K)« (sint i — cost j)

5°cost + ¢sint + 10¢sin: — cos: = (82— 1Y cost + 11t sint

Another Method, A+B = 5t°sint — tcost. Then

(%(A-Bj = gE(Stgsinr — teost) = BtPcost + 10t sint + ¢ sint — cose

(62— 1)y cos ¢t + 11¢sint

i B d i i k i T k
3] E—:(Ax BY = Axa + d—’:‘xn = 5¢2 -3 + 10¢ 1 — 32
cost sint 5 sin¢ —COst 0
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[Bsinsi— Pcosti + (57 sine — ¢ cos K]

+ [—3t?costi — 3¢?sinej + (—10zcost — sin )k ]

(% sins — 32 cost)l — (Ffcost + 32 ging)j + (52 sint — sing — 115 cos)k

Another Method, _

i i k
AXB = 512 t —3 - —~Bcosti — 3sintj + (—5L2cost — ¢ sint)k
sint —oo8t 0
d 3 . 2 . 3 2, o ., .
Then EE(A)(B) = (t°sint — 3t cos )i — (£ cost +3t%gint)j + (5t sint — 11f cos ¢ — aint)k
d L A A, dA . ga @A
{c} d:(A”ﬂ = A- it + dz'A = 24 It

= 2(521 + tf — °k) - (1021 + 1§ — 32ky = 1008 + 26 + 68

Another Method. A*A = (327 + @ + (=7 = 25F + &+ 8

Then ;;—i-(25r4+39+z5) = 10065 + 2% + 6°,

9. If A has constant magnitude show that A and dA/dr are perpendicular provided [dA/d:l £ 0,

dince A has constant magnitude, A-A = constant.

4 L A dA L dA L ga dA
Then 3.(A~A) = A5+ A = 2470 = 0.
Thus A%‘ = 0 amnd A is perpendicular to ff provided |d—£| # 0.

10. Prove i(A']?-x cy = A-Bxd—c + A-CLB—XC + dA-BxC, where A, B, C are diffetentiable
du du du du

funetiens of a scalar u.

By Problems T{a) and 7(b), i)’L'(BXC) = A‘i(BxC) + d—A'BxC
du du du
dc 4B A
= . ¥— + — + -—-
A-[n du duxc] du BxC
= a.p %€ .iB dA |
= ABxdu+A duxc+du Bx(C
d . av_dVv
11. Evaluate — (V-5 X 5.
dt( dt )
i, dv_dv, _ o.dv _d'v £V dv o dv dv 4V
By Problem 10, dt(v' dt X d.r?) B v.dt X s A g2 22 - dt dr . df
v _d°v dv _ 4V
= v ¥ 2 ¥y 040 = v.EEx &L
v dt X di® 0 di X d:3

12. A particle moves so thal its position vector is given by T = coswti + sinawt] where w is a con-
stant, Show that (z) the velocity v of the particle is perpendicular to r, (b) the acceleration a is
directed toward the origin and has magnitude proportional to the distance fromthe origin, {c) rxv=
& constant vector.



VECTOR DIFFERENTIATION 43

dr . . .
{a) ¥ =E = —wsinwei + @ coscwtj

Then r.v = [coswzi + sinwtﬂ '[—co ginest §f +ow cosa)tj]

n

(o8 it} {(—w Binwi) + (sinwi{w coswi) = 0
and v and v are perpendicular.

4y dv
By =2 = — = —w%coscwrl ~ wsinwt i
) diZ 4t i
= ww?[eoscori + sincori) = —or

Then the acceleration is opposite to the direction of r, i.e. it is directed foward the origin. Iis
magnitude is proportional to || which Is the distance from the origin.

{e) Txv = [cosmsi +sincutj] b [—co gincwt i + & cos wt j]
i i k
= cos wi sin we 0| = wieosZwe + sinfw)k = wk, a constant vector.

—fd gincwt  r cosdt D

Physically, the motion ig that of a particle moving on the eirenmference of 5 circle with constant
angular speed <. The acceleration, directed toward the cenfer of the circle, is the centripetal accel-

eration.
B JdA d dB  dA
13. Prove: AX=— — —2=xB = Z(AXT — T2 xB).
dr? 4’ cf.f,( dt dt )
d dB _dA _ 4B d dA
PP i B = (A FTUAS AR L

el a2
- ax LB, da, a.’B__[dA iR . d°A p]

IB %A
= A
de? dt dt a? X xB

di? dr?

14. Show that A - dA = A‘“_E .
dt dt

Let A = Aji+A,j+4sk. Then A = VAL + A5 + A4,

a4 Cafp,., 44 A, dA
I C —(A1+A9+A3} 172094, di + QA,,d + 24, —F)
ddy dd, dA
TR T AV A _ dA dA
= 5 72 = " s i.e. AE = A'd_; :
(A1 +4,+ Aa)'
Another Method,
since A.A4 = 4%, L) - Lo,
d dA dA dA d 42 d4
LA = - 2: ST I = GA d g2y - a4
dr( A) A dt dt A ZA_ dt and dt (49 24 de
: A _ dA _ , d4
Then 2A°d—£ 21‘1 dt or A- Eiﬁ = A E .

Note that if A is a constant vector A- = 0 as in Problem 9.
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- A L x}’_ i j 2 i '——’-B—Au—-—s Y o =
15. ¥ A (2x%y i+ (e y sinx)j + (x° cosy)k, find: % Jy o2 y? 3% Jy Ox

OA _ O o0 L, 0 R I
= = ax(fzx v o—xfi 4+ ax(e’@’—y sina)j + -ax(x eosyYk
= (dxy — &) + (yeY —ycosx)j + 2w cosy k
oA 3(22:9y—x4)i + —a—(exy—y sinx)j + —E—(xzcosy)k
Oy y dy
= 2x2j + (xe®¥—sginxyj — x®siny k
¥a _ 3 ' 3 3
EX = E;(‘nyv—clxs)i + a(yexy—y cosx)] + :a;(zx cos v}k
= 4y —12Di + 2 +y sinx)] + 2cosy k
2
oA . 8 -] ; 2 .0
o = BJ((29‘:2}1 + ay(xc’@’——smx)j - By(x giny)k
= 0 + x26%Vj — x2cosy k= 577 j — 2% cosy K
2
dA o JA B o . O, % o 9,0
gA . 2.8 o Zop?i o+ @D - — (=" giny)k
oy T wmley) T L g e et 3 8
= axi + (xye + Y —cosx)] — Zxsiny kK
2
JA o 0A 93 o s S xy . 3
= 228y o Cany — = - (2 K
Byax ay{axj ay(éxy 4xi + Bj((ye v cosx)] a;v( cosy)

= 4xi + (xyexy+exy—cosx)j -~ 2x giny k

Fa O

Note that -
ay dx o oy
hae continuous partial derivatives of the second order at least.

i.e. the order of differentiation is immaterial. This is ttue in general if A

3 .
g _ {cbA) at the point (2,—1,1),

16. If ¢(x,y,z) = xy°z and A = xzi—xy?§ +yz%k, find

3x” ¥z

DA = (ay?z)(xzi—xy?] vyatk)y = 2?20 — x2ytz § + xy?fk
9 e B p2.2i _ 420 4p i 3,8 - 2.2, 2.4 a,2
B(¢A)—-_a—(xyz1—xyz]+xyzk)-2xyzx-—xy43+3xyzk
F4 z

Calp 3 )
o D (@A) = a-(?x?ygzi—ny“j+3xy3z2k) = dry2zi — 2y*) + 3%k
x Uz =

£} 3

m(cﬁmy = B—(4x;y221—2xy4j+3y322k) = 4y?z i —

X X

If x=2,y=—1,2=1 this becomes a-17(1 — 2—13"5 = & - 2.

17. Let F depend on x,y,z,t where x,y and z depend on ¢, Prove that
JF _ 3F  OFde  3Fdy , OFdz

& - ot Toxdt T Yy ds T %z dt
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under suitable assumptions of differentiabiiity.
Suppose that ¥ = FE(x,y,z,0)i + Fyzxv,2,0)] + Fylx,y,z,80k. Then
dF = dF i + dF,j + dE &k
OF OF; aF oF, . OF, OF, aF , - R .
-1 + =1 + dy + =4 + | ==dt + =2dx + 2 dy + 224
e v S o TGl e S2as 5 ot 4l
OF, oF, OE, OF,
+ =24 =2 d =2dy + =2 dz]k
[ Bs P ax * ay Y Bz z:|
oF, oFy OF; Fy OF, el
= (=it /=1 2 Rd (i 2§ o+ 2wy
ST Gl E e
R SRy OF; oF oF, . 0
=0+ 5 + == Kydy 4+ { + —=j + -2 kyd
ST TRy ST e
oF aF OF oF
= o od Ty + dy o+ d
8; ‘ ax ¥ ay 4 az g
dF JF , OF dx _ OFdy , OF dz
d —_— = = + — = 4 -
MR T W Tmae TS W
DIFFERENTIAL GEOMETRY.
18, Prove the Frenet-Serret formulas (a) g;T— = «kN, (&) g—? = —7N, {¢) %SI! =TB—«KT.

{¢) Since T.T =1, it follows from Problem 9 that T-j?T = 0, {.e j—} is perpendienlar to 'F.
If N is a unit vector in the direction 2 & , then j;sr = KN. We call N the prircipal normal, x the
curvature and O = 1/ the radius of curvature.

(¢) Let B=TxN, sothat B = qx 8N | 8T o dN . o - TxON.
ds ds ds ds 4 ds

Then ’I‘-g-li = 'I‘-'I‘xd—N = 0, sothat T is perpendicular to B
ds ds ds

But from B-B =1 it follows that B'-j—f' = ( (Problem 9, so that %SE is perpendicular to B and
is thus in the plaps of T and N.

h .
Since E? is in the plane of T and N and is perpendicular to T, It must be parallel to N; then 9B _

—7TN. We call B the bingrmal, 7 the torsion, and o = 1/7 the radius of torsion. *

{e} Since T,N,B form a right~handed system, sodo N,Band T, i.e. N=BxT.

Then dN = Bxd—T +é-B-xT = BX«KkN — *NXT = —xT + 7B = 7B — KT.
s ds ds

19. Sketch the space curve x =3 cosi, vy =3 gin¢, z =4¢ and find
(o) the unit tangent T, (b) the principal normal N, curvature &

and radins of curvature g, (e) the binommal B, torsion 7 and
radius of torsion o .

The space curve is a cireular helix (see adjacent figure). Since
t=2z/4, the curve has equations » = 3 cos(z/4), v = 2 sin(z/4) and
therefore lies on the cylinder 2% + 42 = g,

(e} The position vector for any point on the curve is

45
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I = 3costi + 3sincj + &k
dr  _ c . .
Then A —32singi + 3costj + 4k
ds dr dr de N ) z
—_— = — = —_—— = — + =
o ld: =.2 /(3 sint)? + (3cost)® + 4 5
dr dr/dt 3 ... 3 . 4
_—_ = b = _— — + = + = R
Thus T T Te /s 3 sint i 5 cost ] 5 4
dT d [ 2 4 _ 3 , 3 .
£ = - = + 2 + = = - = — = al
by 4 ds( 5 gine i 5 cost § 5 k) 5 cogtd = ging j
dT dT At 3 - 3 ..
— = = -— — . F L
ds ds/dt g5 COSEL — g SN
. dT  _ dT | _ - >
Since Is KN, ld_s [ lK| ]N| ¥ a8 x=0.
_ydry _ /.3 o 3 2. . 3 I R
Then K = IE = 1/ {(— %cost) + (— ﬁsinﬂ = 5§ and L =% = 3
From -dz = N, weobtain N = L ar = ~costi — sintj.
ds K ds
i i k
3 . 3 4 4 .. 4 - 3
= T = — = gint = cost — = = ginti — = cost + =~k
() B N = in H cos 5 5 3 5 ] 5
— COSt —sint - O
dB 4 4 . 48 dB/dt 4 . 4 ..
— = = 4+ = - = — = = + —
7 5 cosed +ogosined, o0 ds/dt g5 C08E1 T g5 intd
. . 4 . 4 4 1_25
-— = — -_— —_— = -_— + — = = m——T
TN T{—costi sint D 75 cost i 25 gint] or 7 55 and o =

20, Prove that the radius of curvature of the curve with parametric equations x =x(s), ¥ = ¥(s), z = 2(8)

hr)

is givenby p = 2 +(—I~§)
5 ia£s

The position vector of any point on the curve is r = x{s)i + ¥(s)F + z(x)k.

. v 2 e
Then T=g-——d—xi+d—yj+£t£k and d_T=d_xi+§_yj+d;_z“
ds ds ds ds ds ds? dsZ ds”

k.

T vz | d” :
Bt — = N sothat K« = | d—TL = /(d—-{} + {_y)z + (ﬁ__z)z and the result follows since p:l-
ds ds s ds2 K

z 3
dr drx ro_ T,

21. Show that 7s . 7a2 X g5t ,OQ

b3 K}
&, dx _dT _ n, dr_ aN , dKy o K (TB—KT) + SEN = KTB — T + KN

ds ds?  ds ds? ds ds ds ds
o 3
dr dr dr _ o dr
7 dTQX_—dsS = T KNX(KTB~x~T + Z;N)
2 x

= T (K?TNxB — «®NxXT + K%-ENXN) = T (K2TT +£°B) = k5T = ;

[
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The tesult can he written ' ' :
x y Z

R R A T i Rl IR

" nr MY
x ¥ z

where primes denote derivatives with respect to s, by using the result of Problem 20,

22. Given the space curve x =¢, v = &,z = %33 find (@) the curvature ~, (5) the forsion 7.

>

{a) The position vector is r© = i + £] + % fk.

ar . . 2
Then o -1 + 2t + 20k
ds _ | dri _ Jde dr _ Tz = .8 2
= = | =1 = —e = VDY 4 (2 2t = 1+ 2
dt de ' Vv odt de n (@7 + (27
_dr _odride _ i+ 2tj + 30k
and T =4~ oova 1+ o
dT (142020 + dth) — (L + 25+ 27 R)4) _ —4i + (2— 4] + 4k
dt (1 + 272 (1 + 292
s o
Then AT _ dTHe _ —4ei + (2—4;2)3 +dtk
ds ds /dt (1 + 2.5°
_gr . dT Viedn)? + (2— 4P 5 (u} 2
g — = ! = f.._ = = -
ince 7e XN, “ U e | 1+ 21‘,2)3 (1 + 2:7)9
. 2.
) From @, N- 10T =i a-afx o
K ods T+
i i k
o =0 .
Then B = TxN = L 2 2 . xi-uitk
1+ 2¢ 1+ 2t T+ 2 1+ 227
2t 1— 27 2t

1T+22 1+ 9f 1+ 27

o dB 4l + (4 — ) — 4tk dB  dB/dt 4ri + (4 — 2)§ — ek
Now ... = N and  —— = =  or2
1 {1+ 267} ds ds /dt (1+ 25
. — i+ (1 =2 * K4 . dR 2
Also, —TN = —7 - —-—1. 8 - = —7N, wefind T = — ’
o ( ince ° we fin 1+ 27

1+ 2=

Note that « = 7 for this curve.

23. Find equations in vector and rectangular form for the (a) tangent, (b3 principal normal, and (e}
binormal to the curve of Problem 22 af the point where £ = 1.

Let Ty, N, and B, denote the tangent, principal normal and binormal vectors at the required point.
Then from Problem 22,
=2 —j + 2k 2 -2 + k

T, = — 5, N, = 5 , B, = 5
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It A denotes a given vector while r, and r denote respectively the position vectors of the initial point
" and an arbitrary point of A, then r—r is parallel to A and so the equation of A is (r—r ) ¥ A = 0.

Equation of tangent is r—rq} * Ty =
Then: Equatlon of principal normal is  (r—r1,} X N, =0
Equation of binormal 1s r—t5) XBgy = i]

In rectangular form, with r =x1 + yj + zh, tp=1 +J1 1 %k these hecome respectively

x—1 y—1 z-=2/3 xa—1 _y~-1 z—-2/3 ~x-} _y-—1_ z—-2/3

1 2 2 =2 -1 9 ) 1

These equations can also be written in parametric form (see Problem 28, Chapter 13..

24, Find equations in vectar and rectangular form for the (a) usculating plane, (b} normal plane, and
(c) rectifying plane to the curve of Problems 22 and 23 at the point where s = 1.

{¢) The osculating plane is the plane which contains the tangent and principal normal, X r is the position
vector of any peint in this plane and r, is the position vector of the point £ =1, then r—r, is perpendie-
ular to B, the binormal at the point £=1, f.e. -r5) By~ R

(%) The normal plane is the plane which is perpendicular to the tangent vector at the given point. Then
the required eguation is (r—r )« T, = 0.

(¢} 'The rectifying plane is the plane which is perpendicu-
lar to the principal notmal at the given point. The
required eguatlonis (¢—1ty) "Ny = 0.

Normal Plane .

In rectangular form the equations of (a), (byand (¢}
become respectively, ( '

2x—1)—2Ay—1) + Uz —2/3) = 0,
Wx— 1D+ 2Ay—1)+ A —2/3) = 0,

—2x—1 —1y-1) + 2z—2/3) = O. ;

The adjoining figure shows the oseulating, normal / g}:& / Rectif¥ing Flane
and rectifying planes to a curve £ at the point F. 5
25. (a) Show that the equation r = r{z,v) Teptesents a surface.
(b) Show that ;?—-'f X $ represents a vector normal to the surface.
{c) Determine aoﬁnit ﬁgrmal to the following surface, where a > 0
' r = eacosy sinv 1 + asing sinv j + acosv K

(@) If we consider v to have a fized value, o

= AR oAk PreAEERRS 4 b0

say #y. them ¥ =rt{un,v) represents a ﬁ,ﬁ:?z_i:-_,_@«;gwvMMM;_ﬁwajjf SEINIINIY
cwrve which can be denoied bY u = uj.

R TN B

i
B g0 PR —
»g’ 4

gimilarly # =x, defines another curve prta o v r bidas

r=r{u,,v). As u varies, therefore, r = i : ¥ X
s R . . Bt i

Tiu,r) represents a curve which moves in b i

3 i i
. (AT SRt it e
UL BGRHh 0Lk b s By sy o
sk tat el F i n i Pk 5w
- . e

space and generates a surface S. Then
b =r(z,v) represents the surface 5 thus
generated, as shown in the adjoining fig-
ure. )

The CUrves u =g, & =iq, s represent definite curves on the surface. Similarly v =vy, V=24,
represent curves on the surface.

By assigning definite values to u and v, we obtain & point on the surface. Thus curves u = ug and
v = v, for example, intersect and define the point {u,,v,) on the surface. We speak of the pair of num-
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" bers (u,v) as defining the curvilinear coordinates on the surface. If all the curves w» = constant and
v = constant are perpendicular at each point of intersection, we call the curvilinear coordinate system
orthogonal. For further discussion of curvilinear coordinates see Chapter 7.

() Consider point P having coordinates (g, )
on a surface 5, as shown in the adjacent dia-
gram. The vector Ot/ du at P is obtained by
differentiating r with respect to u, keeping
©» =constant vy, From the theory of space
curves, it follows that Or/du at P repre-
sents a vector tangent to the curve v =v, at
P, as shown in the adjoining figure. Similar-
ly, Or/dv at P represents a vector tangent
to the curve u = constant = u,. Since Or/Cu
and or/dv represent vectors at P tangent
to curves which lie on the surface S at P, it
follows that these vectors are tangent to the

or o
surface at P. Hence it follows that E:x—‘—r

dv
Is a vector normal to S at P.

{e) or = —esine sinv i + o cosu sinv |
Ou
ar _ . . .
3y @ Ccosy cosv I + asine cosv J — asinv k
T
i J k
o9r  Or . .
Then = XA = | —asinu sinv @ cosy sinv 0
S v
@ COSL COSv a sinu cosw —n siny
. . b . =
= -4 cosu sinZv i — 2° sine sin®v i — o sinv cosv k

represents a vector normal to the surface at any peint (u,v).

A unit normal is obtained by dividing é X h by its magnitede, I h X i | , given by
B T du " ow

Va* cos?y gin*v + &% sin”n sin*v + o* sinZv cosle

= Va* (cos®u + sin®u) sin*y + a* sinv cos’e

Va* sin?v (sinZe + cosZv) =

a? siny if sine > 0
—2? ginv i sine < 0
Then there are two unit normals given by
* (cosu sinv i + sinuw sine j + cosv k) = +q

It should be noted that the given surface is defined by x=acosk sine, y=e sine sinv, z=a cosv
from which it is seen that =™+ y2+ 2 =d > which is a sphere of radius . Since r =an, it follows that

n = cosu sinv i + sine sinv j + cosv k

is the cutward drawn wnit normal to the sphere at the point (u,v).

26. Find an equation for the tangent plane to the surface z = x%+ y9 at the point (1,—1, 23,

Let x=zu, y=v, z= “+v® be parametric equations of the surface. The position vector to ahy point
on the surface is
r = ui + wj + (u2+v2)k
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Then % = i+ 2k = t+ 2k, %: = j+2vk = j— 2k atthe point (1,—1,2), where »=1 and » =-1.
H

By Problem 25, a normal r o the surface at this point is

a = ﬁxﬂ = (itAx{—2k) = ~2+2+k
2" O

The position vector to point (1,-1,2) is Ro=1-j+ 2k.
The position vector to any point on the plane is

R = xi+yj+zk

Then from the adioining figure, R—R, is perpendicular to
1 and the required equation of the plane is (R—RO)-n =1

or '[(x1+yj+zk)—-(i—j+2k)]-|:-—2i+2j+k] =0
e, —2x—1) + Ay +1)+ (22} = 0 or 2% —2 —z = 2.

MECHANICS

21,

Show that the acceleration a of a particle which travels amlong a space curve with velocity v is

given by )
' a = T 4 LN
di Je

where T is the unit tangent vector to the space curve, N is its unit principa! notmal, and o is the

radius of curvature.

Veloeity v = magnitude of v multiplied by unit tangent vector T
or v = T

Differentiating, a = gtl %(‘UT) = j—: T + v%{r—:"
Rut by Problem 18{a}, % = (;—ST ?{E = KN%E = KyN = %
Then a = L;—?T"Pv(%) = %T+%N

This shows that the component of the acceleration is dv/dt in a direction tangent to the path and » %0 in
& direction of the principal normal to the path. The latter acceleration is ofien called the cengripetal accel
eration. Tor o special case of this problem see Problem 12.

28. Tf r is the position vector of a particle of mass m relative to point & and F is the external force

on the particle, then exF =M is the torque or moment of F about O, Show that M = dH/dt, where
H=rxmv uand v is the veloecity of the particle.

d
M = rxF = rx (mv) by Newton’s law.
d - _d Ar
But I r¥my) = TX d {(mv) + dt X mv
= rx—dr(mv) + vxmy < rxﬁ—(mv) + 0
dt dt
. d _ dH
ie. M = i Txmv) = Tt

Note that the result holds whether m is constant or not. H is called the anguler momentum. The result
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stetes that the forque is equal to the time rate of change of angular momentum.

This result is easily extended to a system of n particles having respective masses My, Mg, ..,

7
and position vectors LA PPN with external forces F,, F?, -, Fy. Forthis case, H=3 m
i i - EX]
is the total angular momentum, M = 3> rkx Fk is the tofal torque, and the resuit is M = ri? as hefare.
B=1

An observer stationed at a point which is fixed rel-
ative to an xyz coordinate system with origin O, as
shown in the adjoining diagram, observes a vector
A=A + 4,5 + Agk and calculates its time de-
tivative to be % it % i+ % k. Later, he
dt dt dt

finds out that he and his coordinate system are ac-
tnally rotating with respect to an X¥7 coordinate
system taken as fixed in space and having origin
also at (. He asks, ‘What would be the time de-
rivative of A for an observer who is fixed relative
to the X¥Z coordinate system ?’

i
ey S >.zs&‘\
A a8
hd

(ay If ‘fi—‘? and {%A denote respectively the time derivatives of A with respect to the fixed
f m
and moving systems, show that there exists a vector quantity @ such that
dA dA
—_ - I +
d | dt ‘ @xA

by Let Df and D'y be symbolic time derivative operators in the fixed and moving systems re-

spectively. Demounstrate the operator equivalence
D}c = Dm + ) X

{a) To the fixed observer the unit vectors i,j, k actually change with time. Hence such an observer would

compute the time derivative of A as

dA _ dAs dd, dA, di i dk _
&) & T @t Tt gk Ay A+ A ie.
dA | | dA i dj dk
<_2) At 1)" dt Lt Ay ax t 4y dz 8 de

Since i is a unit vector, di/dt is perpendicular to i (see Problem 9) and must therefore lie in the

plane of j and k. Then

di
¢y 5= o+ ok
- di .
Similarly, {4) o ok + o, i
. dk . .
{(5) ;7 = (151 + 0‘,83

From i.j=0, differensiation yields i- 3 + 2 j<0. But i. %9 =0 from @), ang a5y
dt  dt d 4 1

: dt
from (2); then lI4 T e 0&1 .
Similarly from i-k=0, i-g—k +@-k=0 and Og=—®,; from j-k=0, j-dk A
dt dt de
Bg=—0y.

2i d
Then T = @i+ Gk, o= ok-a, 9

7 7t S Otsj and

25V

+2k=0 and
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di dj di  _ .
g t dogy * ABE = (A, - W AN (A, A, — OeAd] + (@,4, + &gA0k

which can be written as

i i k
G —Op Gs
Al A? A3

Then if we choose Og =y, —%p = Wa, ¢4 = g the determinant becomes
i i k
Wy Wy al = @XA
Al AQ A‘G

where @ = il + wsj + k. The quantity @ is the angular velocity vector of the moving system
with respect to the fized system.

dA

t6) By definition DJcA = d - derivative in fixed system
f
dA e e .
DmA = E‘ = derivative in moving sy_stem.
ki3
From {&}, DfA = DA + wxA = (D +6x A

and shows the equivalence of the operators DJC =D, +t@x.

306. Determine the (a) velocity and {b) acceleration of & moving particle as seen by the two observ-
ets in Problem 29.

e

fa) Let vector A in problem 29 bhe the position vector r of the particle. Using the operator notation of
Problem 29¢k), we have '

(h Dfr = D, twxdr = Dor +@xr
But Dfr = v;>|f = velocity of particle relative to fixed system
Dmr = Ypm = velocity of particle relative to moving system
w@xr = vmv = velocity of moving system relative to fixed system.
)

Th_en {I) can be writlen as

@ Vit

v +a@axr

pln

or in the suggestive notation

3 —
” Yof T Tem | mir

Note that the toles of fixed and moving obsetvers can, of course, be interchanged. Thus the fixed
observer can think of himself as really moving with respect to the other. For this ease we must inter-
change suhscripte m and f and also change @ to - since the relative rotation is reversed, If this is
done, (2) becomes

v = vy —@xr o v = v + @XT

blm blf pF blm

a0 that the result is valid for each obseIver.
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32.

33.

34.
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. . .-l
(6) The acceleration of the particle as determined by the fixed observer at 0 is Dfr = ch(Dfr). Take Df
of both sides of (1), using the operator equivalence established in Froblem 29(4). ‘Then

DJ_F(DJC )y = Dfmm r + @xr)
= (Dm+ wx)(Dmr + @arxr)
= Dm(Dmr + @xr + wx(Umr + @ xr)

= Dfnr + Dm(a)xr) + memr + @x (@ xr)

=2 2
or Dfr = Dmr + 2w xDmr + (Dmm) XE + 0 xX{@xXr}
Let a¢|f = D}Q, r = acceleration of particle relative to fized system
abm = Dﬁr = acceleration of particle relative to moving system.
Then am” = 2wxDmr t (D@ xr + wx(axr)
" = acceletation of moving system relative to fixed system
and we can write a?if = a'z-'?im +a, 'F o

For many cases of importance & is 2 constant vector, i.e. the rotation progeeds with conatant an-
gular velocity. Then Dﬂ,&) = and

amlf = ZG)XDmr + @ xi{wx1) = 2@ x v, + @Xx(@Xr)

The gnantity 2@ xv, 1s called the Coriolis aceeleration and @ x (@ xr) is called the centripetal geecel-
eraiion.

Newton’s laws are strietly valid only in inertial systems, i.e. systems which are either fixed ar
which move with constani velocity relative to & fized system. The earth is not exactly an inertial sys-
tem and this aecounts for the presence of the so called ‘fictitious* extra forces (Coriolis, etc.) which
must be considerad. If the mass of & patiicle is a constant M, then Newton’s second law becomes
(4) MDZr = F — 2M(@WxD, 1) —~ M[@x(@xn)]

where Dy dencles dit as computed by an observer on the earth, and F is the resultant of all real
forces as measured by this observer. The last two terms on the right of (4) are negligible in most
cases and are not used in practice,

The theory of relativity due to Einstein has modified quite radically the concepts of absolute mo-
tion which are implied by Newtonian concepts and has led to revision of Newton’s laws,

SUPPLEMENTARY PROBLEMS

o
—f, z . . dR 4R dR d2R .

If R=efi+ ¢+ 1)) ~ tanz k, find @9 T, (© |EJ' () ,F[ at t=0.

Ans. (@) —1—k, (BYi+2j, (IvI, ()15

Find the velocity and acceleration of a particle which moves along the curve x = 2sin 3¢, y = 2 cos B,
=8t at any time :> 0. Pind the magnitude of the velocity and acceleration,
Ans. v=6cos 31— 6s5in3cj+ 8k, a=—18sin3ci — i8cos 3tj, |v|=10, |a|=18

Find a unit tangent vector to any point on the curve x = a cos Iz s ¥y =asinw?, z =bt where a, b, are
—aw ginaiti + aw ecoswrj + bk
be}

1/a o + 82

constants, Ans,

I A=:%1—¢j +(a+)k and B = (2%-3)1 +j — rk, find

@2 @B, m-Laxe, @7 1a+8l. @ APy ot o1, s, @) -6, (5) 1§ 43K, (o)1,
(dyi+8j+ 2%
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35,

36.

3.

38.

39.

40.

41.

432.

43.

44,

43.

46.

VECTOR DIFFERENTIATION

It A=sinuitcosuj+uk, B-cosui—sinuj—3k,and C=2i+3j—k, find ;—H(Ax(BxC)} atu=0.
Ans. Ti+ 6] — 6k
d, . dB 4 FB d’A

A : : : : &b A
s (A- 7 T ds .B) if A and B are differentiable functions of s.  Ans. A I Jo2 B

_ 4
It A= 361 — ¢+43F + (7 —2)k and B() = sinti + 3¢ t§ — 3costk, find 73 (AxB) ate=0.
Ans, —30i + 14j + 20Kk

Find

2
1t % = 61§ — 24:7j + d sint k, find A giventhat A =2i +] and

Ans, A = (®—t+2)i + (1—20Hj + ¢ —dsinnk

A . —1i— 3k ate=0.
dt
Show that r = .s»“ﬁ(ci cos 2t + C, sin2), where ©; and C, are constant vectors, is 2 solution of the dif-

2
feremtial equation dr L odf 5 = p,
dt dt

o
Show that the general solution of the differentlal eguation %c% + 20 g{ +awlr =0 , Where @ and ¢ are con-
stants, is

@ x = e/ E b gl g oW s o

(5) T = e"2¥C, sin Vew? — 02 ¢ + C, cos Vol — o2 ¢y it 02— w? < 0.
ey r = ek, +C,0 if 0% —? =0,

whete €, and Co are atbitrary constant vectors.

o

dr dr _ dgr + ar . ¢ = | -
dr _ 4% _ g o= ¢ o1 = o, ¢X + ar=0.
de2 4 dt r=0, &) dt? zd; r=0, () dt* 0

Ans. (@) £ = Cee5t + Cpe™t, (b) £ = e7HOy * Cat), (¢) T = Cycos 26 +Cp 8in 2t

=}

Solve (a}

Solve dY _ X, X . -¥.

~ g Ans, X =g c08¢t + Cosint, ¥ =€ sini — Cy cos
t ¢

2 '82 82 '82
If A = cosxy | + (3ey — 25)j — (3x + 290k, find %_:' %%’ F%s;, aj'—AQ’ El%y' ay%x )

e
Ans. BxA = —y ginxy i + (3y —4x)j — 3k, %Yé = —x ginxy i + 3xj — 2k,
oA 2 Y 7. 0 A Fa
-5 = — —_ = — = = = + 5j + 2§
] ¥y~ cosxy i — 4i, ay.z x° cosxy i, o O By o {xy cosxy + sinxy)i + 3j
2

k)
It A=alyzi— 22§+ 2%k and B = 220 +xf — 2%k, find % (AXB) at (1,0,-2).

Ans. —4i— 8i
A

1f €4 and ¢, are constant vectors and A is a constant scalar, show that W = ¢
. X N - |
satisfles the partial differential equation = o + Jy 2 = 0.

(€1 sin Ay +C, cos Ay)

faw(t— 10)
Prove that A = Lr——-—-— , wherep, isa constant vector, @ and ¢ are constant scalars and i =v -1,

Z 2
satisfies the equation gA 2 %’1 . 124
T T

52 + = 32 - This result is of importance in electromagnetic theory,

DIFFERENTIAY. GEOMETRY

47.

Find (=) the unit fangent T, (b) the curvatwre X, {¢} the principal normal N, {d} the binormal B, and (e} the
torsion 7 for the space curve x =t—£3, ¥ =12, r=p+rVE,

ns. (&) T (1= + 2§ + (1+Ak © N 2t _+1—.52.
ns., & = ' = i i
Va1l + 9 1+¢° 1+:2 @
e) T= 7, 5z
2 i 2 {1+ %
by K = 1 @ B = (t ni 2f + (#© + 1}k

1+ Vo + 6



VECTOR DIFFERENTIATION

48. A space curve is defined in ferms of the arc length parameter s by the equations
x =are tans, v = %1/5111(52 + 1}, % =s — airc tans
Find (a) T, (6)N, (c) B, (d) &, {e} T, Ne. o,

i+v2sj + 52k V3
Ans. (@) T = Lo LEE X @y & = g
—V2si+(1—5%j +vV2sk V2 5?41
b N = —_ + T = . o= .
®) s2+1 “ §7 41 @ 3
o, . o
() B = 1z VBsi vk () p= 211
s7+1 Vo

49. Find « and 7 for the space curve x= ¢, y = £2, 2= ¢ called the twisted cubic,

_o2vel + 9+ . 3

Ans, , T = e
(9t + 442 + 1)3/2 0t + 92 41

30. Show that for a plane curve the torsion 7= 0.

55

51. Show that the radius of curvature of a plane curve with equations ¥y=f{x), 2= 0, ie. a curve in the xy

107352
plane is given by o = h+—|0’11_ .
Yl

32. Find the curvature and radius of curvature of the curve with position vector r = o cogn i+ sins j, where

@ and b are positive constants. Interpret the ease where e=5,

ab
Ans. x = o _. 8 7 2. .8/2
(8” 8in" & + 5" cos™ u)"

cle of radius e and its radius of curvature G=a,

= % ; if a=4, the given curve which is an ellipse, becomes a cir-

d
53. Show that the Prenet-Serret formulas can he written in the form % = @xT, % = xN, g?B = @ xB and

defermine @ . Ans, @ =7TF + «B

s oee
54. Prove that the curvature of the Space cutve r =r(¢) is given numerically by « = JLT; ,
note differentiation with respect to ¢. f i-[
55. {(a)Prove that T = rI:r ><|r2 for the space curve r = r(s).
Ex7r!
dr d’r x &
, ds ds? 7 dsB
(b} If the parameter ¢ is the arc lengih s show that 7 = R
{(d v/ds
36, If Q=rx1, showthat «= Qs , T= 'Q"? .
i Q

57. Find x and 7 for the space curve x = & — sin &, y=1-cosf, z=4sin(&/2).

— " + - . 4

Ans. x = im2c036, S {3 +cos &) cos 82 + 2 s5inf sin 2
8 12cos & — 4

2+ 1 :

Y—1° Y 7y % =¢%2. Explain your answer,

58. Find the torsion of the curve x =

Ans. T=0, The curve lies on the plane x — dy +3z=5.

where dots de-

38. Show that the eguations of the tangent line, principal normal and hinormal to the space curve r = r(f) at the
boint t=1; can be written respectively r = I tiTy, £=0,4EN,, =2, +tB,, where  is a parameter,

60. Find equations for the (e) tangent, (b) principal normal and (c) binarmal to the curve x = 3 cost, ¥ = 3 sine,

z = 4¢ at the point where ¢=7T.

Ans. (o) Tangent: r = —3i + 47k -+ z(—-—g-j +%k) o x = -3, yf—g-t-. z=4TL+i1

- L.
b]
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(by Normal: 1 = —3i +4m] +ii o %

8+, y =4, z=0.

(c) Binormal: £ = —31 + 47} + (3 +30) o x=-3 y=aTd %z, e =3¢,

61. Find equations for the (a) osculating plane, (5) normal plane and (c) rectifying plane to the cutve x =3¢ -—33,
y=362, z=3 + 4 atthe point where ¢=1. Ans. {@)y—z+1=0, (Byy+z—T7=10, (c)x=2
62. (a) Show that the differential of arc length on the surface r=T(w,v) is given by
ds? = Edu® + oFdudv + G dv?
, _or or r.2 o or St Br or .2
whereﬁ——au Bu'(’au)’ F_Bu ow G_av av“(av)'
b} Prove that a necessary and sufficient condition that the », v curvilinear coordinate system be orthogonal
is F=0. :
§3. Find an equation for the tangent plane to fhe surface ézxy at the point (2,3,8). Ans. 3x +2y —z2 =6
64. Find equations for the tangent plane and normal line to the surface 4z =x2—y* at the polnt (3,1,2).
Ans. 3x—y —2z=4; x =3t +3, y=l—t, 2=2-2
o, %
: -
§5. Prove that a unit normal to the surface r =r{z,v) i8 0 = + 7L-—v;. where E, F, and G are defined as
in Problem 62, EG~F '
MECHANICS
66. A particle moves along the curve © = (5 — 4)i + (4] * (8% — 3k, where ¢ is the time. Find the
magnitudes of the tangential and normal components of its acceleration when #=2.
Ans. Tangential, 16 ; normal, 2V T3
67. If a particie has velocify ¥ and acceleration a along a space curve, prove that the radius of curvature of its
o
path is given numerically by 0 = b
fvxal
G8. An object is aftracted to a fixed point O with a force ¥ = f(n)r, called & central foree, where t is the posl-
tion vector of the object relative to O. Show that rxv =h where his a constant vector., Prove that the
anguiar momentum is constant.
§9. Prove that the acceleration vector of a particle moving along a space curve always lies in the osculating
plane.
70,

(o) Find the acceleration of a particle moving in the xv plane in terms of polar coordinates (p,qb) .
{b) What are the components of the acceleration parallel and perpendicular to 0 ?

dns. (@) + = b= pdDeosd — (P +2pPysimdli
v [(p—pdPrsind + (0P +20P) cos P11

by p—pd?, pd+2pd



Chapter 4

THE VECTOR DIFFERENTIAL OPERATOR DEL, written V, is defined by
a d . P _ 3 . ? 9
V= d+ S+ 2 =12+ g2
Tt T 3% 13 T EY,
This vector operator possesses properties analogous to those of ordinary vectors. It is useful in de-
fining three quantities which arise in practical applications and are known as the gradient, the diver-

gence and the curl. The operator V is also known as nabla.

THE, GRADIENT. Let ¢ (x,v, z) be defined and differentiable at ecach point (x,¥,z) in a certain re-
gion of space (i.e. ¢ defines a differentiable scalar field). Then the gradient of ¢
written Vo or grad ¢, is defined by

- (L +9; 4+ 0 _ Db, , 3b. . 3¢
Vo (51 +ayJ+azk)¢ Bxl+3yl+azk

»

Note that V¢ defines a vector field.

The component of Vb in the direction of a Anit vector z s given byand is called the di-
rectional derivative of ¢ in the direction a. Physically, this is the rate of change of ¢ at (x,y,2) in
irection a.

THE DIVERGENCE. Let V(z,y,z) = Vi + [j + .k be defined and differentiable at each point

{x,y,2) in a certain reglon of space (i.e, V defines a differentiable vector field).
Then the divergence of V, written V.« ¥ or div V, is defined by

Vv = (%j +B%j +%k)-{1{i + i+ Kk
I /AN /) /S

dx ay dz

Note the analogy with A-B = 4B, + A,B, + 4.B,. Also note that V-V # V.V.

THE CURL. If V(x,v,z) is a differentiable vector field then the cwrl or rotation of V, written V x Y,
cutl V or rot V, is defined by

Vxv = (%i + %j + %k)x(Vii + i+ Tk
i k
- |2 2 2
dx dy 3z
[ v v
1 2 3

57
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2 o 3 9 o 9
— a}' Bz i — Ex dz ] + Ox ay k
VE VB l;f!l_ V3 Vi VQ
Coon ., MWWy o, B W
= (5 -ttty T (35 ~ 3 K
Note that in the expansion of the determinant the aperators a—ax , % . -E%z must precede Vi, Vo, Vs .

FORMULAS INVOLVING V. If A and B are differentiable vector functions, and > and Y are differen-
tiable scalar functions of position (x, ¥, z), then

L Vpsdy = Vo + Vg or  grad(@+y) = erad @ + grady

9 V-(A+B) = V-4 +V-B o diviA+B}) = divA + divB

3. Vx(A+B) = VxA +VxB ar cuti(A+B) = curl A + cwrl B
2. Ve@A) = (Vé)r-A + @(V-A)

5. Ux(pA) = (V%A + H(VxA)

6. V-(AxB) = B-(VxA) — A-(VxB)

7. Yx(AxB) = (B-V}A — B(V-A) - (A-V)B + A(V-B)

8. Via-B) = (BVYA + (A-V)B + Bx (VxA) + Ax (VxB)

2 2 . =
9, Vi(Vgy = 2, = 0@ X 9
Ve Ve ax * Sy * Jz2

P aﬂ a‘? '8‘2
where V' = 53 32 = is called the Laplacian operator.

70. Vx(¥¢) = 0. The curl of the gradient of ¢ is zero.
11. V-(VxA) = 0. The divergence of the cutl of A is zero,
12. Vx(VxAy = V(V-4) - VA

In Formulas 9-12, it is supposed that ¢ and A have continuous second partial derivatives.

INVARIANCE. Consider two rectangular coordinate systems of frames of reference xyz and x'y'z'(see

figure below) having the same grigin O but with axes rotated with respect to each
other.

A point P in space has coordinates (x,y, zYor
(xﬁy’, 2" relative to these cooldinate systems. The
equations of transformation petween cocrdinates
of the coordinate tronsformations are given by

: (x,y, )

LI

: {€,%:2)

= lyx + Loy + ls2
) y' o= lgx + lny ¥ lmz
2t = lgx + lepy + Iz

where Lig, [, k=1,2,3, represent direction cosines
of the x',v' and z' axes with respect tothe x,y, and
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z axes (see Problem 38). In case the origins of the two coordinate systems are not coincident the
equations of transformation become

= Iyx + gy + lgz + af
(2) y' = Ixyx + logy + lmz + af
2 = lx + t,'a?y + 5332 + a{;

where origin € of the xyz coordinate system is located at (a1, 25, ab) Telative to the x'y'z’ coordinate
system,

The transformation equations (7) define a pure retation, while equations (2) define a retation plus
translation. Any rigid body motion has the effect of a translation followed by a rotation. The trans-
formation (1) is also called an orthogonal transformation. A general linear transformation is called
an affine transformation.

Physically a scalar point function or scalar field & (x,¥,2z) evaluated at g particular point should
be independent of the coordinates of the point. Thus the temperature at a point is not dependent on
whether coordinates (x,y,z) or (xy! z" are used. Then if @ (x,y,z) is the temperature at point P with
coordinates (x,y,z) while ¢'(x;y,z"} is the temperature at the same point P with coordinates (%, v, 2%,
we must have ¢ (x,y,2) = ¢'(x,y, 2. U P(x,y,z) = @'(x.y, 2", where x,y,z and x,y, 2" are related
by the fransformation equations (1) or (2), we call @(x,y,2) an invariant with respect to the transfor-
mation. For example, x"+y*+z% is invariant under the transformation of rotation (I), since x"+47+z% =
x"‘z + y; + 232.

Similarly, a vector point function or vector field A(x,y,z} is called an invariant if Ax,y,z) =
A(x]yl 2. This will be true if

Ay, + An,y,ni + A y,2)k = A;(x',y',z’)i' + A;(x’,y',Z’)J" + A;(x',y’.Z’)k'

In Chap. 7 and 8, more general transformations are considered and the above concepts are extended.

It can be shown (see Problem 41) thaf the gradient of an invariant scalar field is an invariant
vector field with respect to the fransformations (I} or (2). Similarly, the divergence and curl of an in-
variant vector field are invariant under this transformafion.

SOLVED PROBLEMS
THE GRADIENT

1. If ¢(x,y,2) = 32y — ¥°2°, tind Vb (or grad ¢) at the point (1,-2,-1).

Vo = (-aa—xi + a%j + %k)ﬁx?y—-yszQ)

M

- R 3 o cd o2 .2 D2 a g
1ax(3x ¥e—95z7) 4+ ]By(fixy»-yz + kaz(Bx ¥y =¥z}

= Bxyl + (7 -3 — izk
= 61+ 3aF —3=2" =17} - 2-2f~1)k
< —12i — 9§ — 16k
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2. Prove (@) V(F+G) = VF+VG, (b) V(FGy = F VG + G VF where F and & are differentiable sca-
lar functions of x, v and z.

0 d 9

(a) V(F+Gy = (= 1+—] +-§k)(F+C)

= Bx(F+G) + ]g(Fﬂ“) + k%—(FH;)

EE R

gy eEoEeR

= (i%Jrj:a% +k%)F +(1a% +ja% +k%)0 = VF+ V6
»VEG) = (L1t + L B)FG)

- ax(FG)l + B%(Fc)j + %(FG)B

= (F%f+cgpy + Fg—;; +Gg—j)j + (FSG +Gg’:

F(ax :g;;;)fgfk) + G(?i+.ay]+'ng} - FVG + GVF

3. Pind Vo if (@) d=1nir|, &y &=

(a) r = xi +yj + zk, Then .r| = Va2 +y?+2? and ¢ =1ln \rl| = SIn@2+y2+2).
Vi = sV In (2 +y2+2%)

= 3110 mER a2 + O In (2 y242?) + kL a2y + )}

Vx Sy Bz
A S R
T2 R g? 312+y2+22 X737 + 52 T iy s e

) V¢ V(%j )y = V{(x2+y2+zz)-1/é}

- Vel —
\/:?-l~y2+zi2

= ii(x2+y2+z2)“1/2 bRy Y 4 KL 2 ey2 e 2y Y2
BX By 'az

= i{—%fx2+y2+z2>'3/22x} + j{—%(x9+y?+z?)“3/"’2y} + k{ﬂ%<x2+y2+z9-)‘5/’zzz}

o —xi—yi—zk
(x2+y242% 7" r

4 Show that Vr" = ar’ T.

vt o= Vv 2+y9+22) = V(x?+y?+22)n/2
= B {(x 147 +22) /9} N ]_3 {(x2 +y2422) /2} + k—-—*{(x2+y +2" nfo 21
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- -1 2=-1
= i{%(sva2 -f-y2+z:2)n/2 ' 2} o+ j{.%.(x2+y2+z'2)n/2 2"\(} + k {%(x9+y2+z2)n/ 2z}
= r:(9&2-+~3,r2+z2)ﬁ'/ﬂ“1 (i + %] +zK)
o= -
= a1y = %
© Note that if r = rr, where r, is & unit vector in the direction r, then Vilt= gt .

~
5% Show that V& is a vector perpendicular to the surface d(x,y,2) = ¢ where ¢ is a constant,

Let r=x1+y]+2zk be the position vector to any point P(x,y,z) on the surface. Then dr = dxi +
dyj+dzk lies in the tangent plane to the surface at P.

_ o dob o, o ?_@B_QDd d -
Butdc,‘b—gdx+§y—dy+§;—dz = 0 or (ax1+,ay]+azk)(x1+dyj+ zk) = 0

ie. qu) +dr = 0 so that Vq‘b is perpendicular to dr and therefore fo the surface.

. Find a unit normal to the surface x®y + 2xz = 4 at the point (2,—2,3).

Vily+2nz) = (Zxy+ 220 + x2j + %k = —2 + 4§ + 4k at the point (2,—2,3).

— i +
2i + 4] L “ii +Ej +Ek.
3 3

V=2 +(@F i ay 3
2

Another unit normsal is %i — §j - %k having direction opposite to that above,

Ther a unit normal to the surface =

Find an equation for the tangent plane to the surface 2%z —3xy ~4x =7 at the point (1,—1,2).

Vi(2xe? —8xy —dx) = (2:2—3y—4)i — 3x] + dwzk
Then a normal to the surface at the peint (1,—1,2)is 7i — 3j +8k.

The equation of a plane passing through a point whose position vector is ¥, and which is perpendicular
to fhe notmal N is (r—ro) +N = 0. (See Chap.2, Prob.18.) Then the required equation is

(et +yj + 2l —(i—J+20)]+ (Ti~3]+8K) = 0
or Tx—1) — 3¢v+1y + 8z—20 = 0.

Let ¢ (x,y,2) and ¢(x+Ax, y+0y, 2+Az) be the temperatures at two neighboring points P(x,y,z)
and Q(x+Ax, y+Ay, z+Az) of a certain region. '

(a) Interpret physically the quantity 8p _ dxrlr, y+ly, a+lhz) — pixy,2) where As is the
distance between points P and Q. ~° g

A d.
h & te lm —— = =X
(&) Evaluate Asr—]:lo As ds

(¢) Show that b _ Vo a
ds ds

and interpret physically.

(@) Since [\¢d is the change in temperature between points P and ¢ and As is the distance between these
points, ég—b represents the average rate of change in temperature per unit distance in the direction from

As
Pto Q.
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by From the calculus,

Agp = gﬁ&x + %—qb/_\y + %9& + infinitesimals of order higher than Ax,ly and Az
% y

z

CAg Bl | Ml | B

Then Adim 7S o= gm st A T 3y A T B b
dep dep dx deb dy ep dz

or — = = ==+

ds O d.§+§;ds D7 ds

j—? tepresents the rate of change of temperature with respect to distance at point P in a direction

toward (0. This is also called the directional derivative of .

dp _ Spdx opdy  OPpdz op . ap . 9D dv . dy

i i e e e B —i+ =f+—k
() ds Ox ds ¥ dy ds * Oz ds (ax ! ayj Oz k) (dsl dsj ds )
- V. k.
T ods
Note that since 9% is a unit vector, qu%‘; is the component of Vb in the direction of this unit

ds
vector.,

g. Show that the greatest rate of change of ¢, i.e. the maximum directional derivative, takes place
in the direction of, and has the magnitude of, the vector V.

By Problem 8ic), ii"" = Vb -g—; is the projection of Vi in the direction g—; . This projection will be
£

a maximum when Vq.’) and fl—r have the same directlon. Then the maximum value of g;;f takes place in the
5

direction of Vb and its magnitude is | Vb |-

10. Find the directional derivative of ¢ =x%yz + dxz? &t (1,-2,—1) in the direction 2§ —j — 2K.

1]

Vo Volyz +4xf) = (yz +42°71 + Pz + oy +8x)k
= Bi—j— 108 at ({(1,~2,—1}
The unit vectat in the direction of 21 —j — 2k is
- 2% —j— 2K

a = PR S
Py o 8@

Then the required directional derivative is

; = —j- Zi_Lli_ 2y o 16
Vpra = (8l—j—10k)-GGi—3] S 3 T

ol
+
el
m
w0l

gince this is positive, @ is increasing in this direction.

11. (@) In what direction from the point (2,1,—1} is the directional derivative of ¢ = xzyzs a maximum?
(b) What is the magnitude of this maximum?
Vg = V(nyz:a) = 2xyz9 i+ &g+ 3x2y22k
= —4i—4] +12k at (2,1,—1}

Then by Problem 9,



12..

13.

14.
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(@) the directional derivative is & maximum in the direetion Vgl’) = —d —4j + 12k,
(3) the magnitude of this maximum is | Ve | = v(—a)2 T (4P + (127 = V16 = 4v11.

Find the angle between the surfaces x*+y?+22 =9 and z = x%+y2—3 at the point (2,—1,2),

The angle between the surfaces at the point is the angle between the normals to the surfaces at the
point.
Anormal to x%+y%+2% =9 at (2,—1,9) is
Vb, = Vi 492422 = 24 + 2 + 22k = 4 — 2 + 4k
A normal to z = x2+y2—3 or x2+y2—z =3 at (2,-1,2)is
Vo, = Vix?+y®—2) = 2%i + 29j — k = a1 — 2l - k

(Vb - (Vebyy = ] Vc;bll i Vd)g] cos &, where £ is the required angle. Then

=2+ ek (i~2%—% = [di-2+ak| [4i-2—k| cos®

16 + ¢ — 4 = V@27 +@F Ve (2P (—1F cos &

16 _ 8v21

and cos & = = “g3~ ~ 0.5818; thus the acute angle is & = arc cos 0.5819 = 54°25°

TR

Let R be the distance from a fixed point A{a,b.c) to any point P{x,y,z)., Show that VR is a unit
vector in the direction AP = B,

If ry and r, are the position vectors @i +hj+ck and xi tyi+zk of 4 and P respectively, then
R=t—r, =(x—a)i+(y—b)i+(z—e)k, sothat R = Vix—aP+(y —b¥ +(z—¢) . Then

VR = V(Ver—afP 4 (y pP 4 zcffy = E=@it (=b)j + z—c)k _ R
Vie—af + (y—bY + (z—c¥ R

is a unit vecior in the direction R .

Let 7 be any point on an eilipse whose foci are at points 4 and B, as shown in the figure below,
Prove that lines AP and BP make equal angles with the tangent to the ellipse at P.

Let R;= AP and Ro= BP denote vectors drawn re-
spectively from foci A and B to point P on the ellipse, and
let T be a unit tangeni to the ellipse at P.

Since an ellipse is the locus of a1l points P the sum P
of whose distances from two fixed points 4 and B is a

constant p, it is seen that the equation of the ellipse is R
Ri+Ry=p. / 2

By Problem 5, V(R +R.) is & normal to the ellipse:; A B
hence (V(R;tR)]+T=0 or (VR,)-T = —(VR).T.

Since VR, and VR, are unit vectors in direction R,
and R, respectively (Problem 13}, the cosine of the angle
between VR, and T is equal to the cosine of the angle be-
tween VR, and —T; hence the anglesthemselves are equal.

The problem has & physical interpretation. Light rays (or sound waves) originating at focus A4, for
example, will be reflected from the ellipse to focus B,
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THE DIVERGENCE
15. F A = 2% — 2%2%j + xy%k, find V-A (or div A) af the point (1,—1,1).

V-a = (%H%H%k)-(x?zi#wsz%+xy2zk>

ﬁ(aczz) +

o

a%(" 2%%%) + %(xyzz)

wz — 2% +xy® = AN — B—1%(12 + (1N(=1Y = —3 ab(L,~L1)

n

16. Given ¢ = 22" . (a) Find V-Vep (or div grad ).
2 2

() Show that V-quzvggb, where V- = 0 4.9 4 % denotes the Laplacian operator,

A ayz Jz

(ay Vb i —a--(zx-"yﬁ’z"f) + ﬁ(zxsy%z“) + Kk -a—(szsz"*)
- zeyezﬂf i+ %syza. i+ Bxsygza K

H

Then V'V (ii 3; + g1;) s 62+ axlyd )+ 8y )

D Oy Tz
L B ana . Dt 4 Ogedyms
= ax(exﬂyz) + ay(r;xsyz) + az(a y2:%)

= 12xy224- + 411324 + 24x?y922

. 3. 9,,73 dp, O, 9P
b V-V R A
0 VY = (gt go gl g ity

3 ? ¢ 3
i} _?;(3_95) . _(E‘@) N E(E@) _ ?_f ¢ ¢
S D 3 'Yy 3z oz d
2 2
30D 0
= (aﬁ*’a—yg*'?)ﬁb = Vo

17. Prove that V () = 0.

2 1 F ¥ ¥ 1
Vid) = (5 to3 t o)
r B2 ayg i /2 +J"9+22

%(/J_._.Q 12,_z2) = %(x?+y2+22)_1/{2 = '---Jc(x‘z+y2-1—;.72)_5/2

x“+y©t+ x
32 1 < 2 3/

T P « N B~ 20—
gx—z(m) ax[ 2 ey? 2] |

-5/2 —&f2 _ 2x2.-—y2-—22

= G2 (x2+y2+2%) (2? +y2 + 2%

(x52+ y‘2+ zQ)E/‘Q

Simitarly,
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2 2 2 o 2 2 2
2 1 %y —z"ex 3 1 o 22—y
W i T ey 38 )=

2
Then by addition, B 3 1

—_— = 0,
‘5 "B e Umnyene)

The equation Vgc;b =0 s called Laplace’s equation. It follows that ¢d= 1/r is a solution of this
equation.

18. Prove: (a) V- (A+B) = V-A + VB
(b)Y V(@A) = (V§)-A + ¢(V-A),

@) Let A = A1 + 4§ + Agk, B = Byi + By + Bsk.

Then Ve(a+B) = (i + §-j " aik) » (A BYL + (A BYi + (AgtByk)
'l y Z

3 3 ?

= o (A+B1)+a_f’“82) + (A+B)

_ 941 B4y _ Bdg & 9B, , 9By
T Ty TE: T T Yo

Y. L
= (%1 + a_yJ + %k).(xlinfig] + Agk)
+ (ﬁi + —a—j + 2. «(Byi + Byj + Bgk)
% Jz
= V'A + V"B
() Ve@dA) = Ve(pdud + Bdaf + Pagk)
3 D, 3
= e s e A _—
3P T 3 () + Sy
o EAi 9 04, O . Odg
=24, Btk —+ 4 el it =3
ST TR et P T, et P,

- Paa s S s Sy v g T DA,

a3 les3 9
= (fi +$J +g¢k) (A + Agl + Agk) + ¢(_xl "’gi +.§zk)°(A11+AQJ'+Iqu)

= (Vé)-a + ¢(V-a)

19. Prove V- (Lg) =0,
r

Let o =+% and A=r in the result of Problem 18¢5).

Ther V-0 ™°r = (Vi e + ¢ HVor

= —3r %r.r + 3 ® = 0, using Problem 4.
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20. prove V- VYV —V V) = UVV =¥ v,

From Problem 18(b), with ¢ = U and A = VV,
V@V = (V- + 0V = (VO (TV) TAvANY
Iyterchanging U and ¥ vields  V-(v V&) = (VIN(VIy + ¥ V.
Vo Vv — v VIn
(Vih-(V¥y + rVY - {(VV)-(VUHVVQU]
vV — vV

Then subtracting, Vi Viry - Vv Vi

21. A fluid moves so that its velocity at any point is ¥(x,y,2), Show that the logs of fluid per unit
volume per unit time in a small paralielepiped having center at I(x,y,z) and edges parallel to the
coordinate axes and having magnitude Ax, i\y,&z respectively, is given approximately by divyv =
Vev.

e e A B

T R
P A
e e 5 SRR R

WY

o e o g BT R B Ak 8O S o G o B B
i:gamo‘&w%xv-w»»&%.&w&w&%&’3?"3 s S b G B A B

& PR L BB i, g i B
T R B AR q . gt g g o 0
EA S B b G ek A ater b
AT L Qe PR ELEYCR SNk I S AN
i mE AR Ms«.l&»m&wvﬁ« a0 e
S e e g a g e R (R gy e maw B8
e * < et b
R LIS Fa s v ek e B K B
-4 e o L

P in

i b g 4% BEHE
Y L S S ) @
PR
FE AR 8]

ogp 2 oo G e

Referring to the figure above,

x component of velocity v at P = v
. 1 .
x component of v at center of face AFED = v — 27 i Ax  approx.
dx
' 1 ’o“m
% component of v at center of face GHCR = ©, + 33 ~ Sx approx
QX

(w, = 2 2 Ay Ay e

Then (1) volume of fluid crogsing 4#ED per unit time

2 Py
. . . 1 Suy A
(2) volume of fluid crossing GHCA per unit time = (v, ¥ 3= L Ay Ay bz
dx
; . . . ; o
Loss in volume per unit tline in x direction = (2 -y = = Mo Nv oz
dx
. . o du,
Similarly, loss in volume per unit time iny dircction = = z Ay Dz
¥
R ; . . 81!
loss ip volume per umit time in z direction = = 8 Ayl Az,
dz
Then, total logs in volume per unit volume per unit time
=l a 3
Sva D2 ZBE ANyl
= O dy oz ) = divy = Vv
Fy

[~ ﬂ\}’ i\.z
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This is true exactly only in the limit as the parallelepiped shrinks to P, i.e, as fx,fy and Az approach
zero. If there is no loss of fluid anywhere, then V-v = 0. This is called the continuity egquuation for an in-
comptessible fluld. Since fluid is neither created nor destroyed at any peint, it is said to nave no sources
of sinks. A vector such as v whose divergence is zero is sometimes called solennidel.

22. Determine the constant e so that the vector Vv = (x 3+ (y—22)i + (x+az)K i8 solenoidal.

A vector V is solencidal if its divergence is zero (Problem 21).

o

Vv %(7;+3y) ' aﬁr(y_zz) + goz(x-ﬂzz) = 1+1+a

Then VeV =0+2=0 when a = —2,

THE CURI.

23. If A =x2°1 — Zyzj + 2yz* Kk, find Vx A (or curl A) at the point (1,—1,1).

Vxa = (Zi+0 5+ Lk xe®i - 2%+ etk
Sy E‘y [ekd

i i) k

- |2 2 2
ax B oz
xz” —2x?yz 2y 2"

= [9(2}"347 - i(—?-76“2?"‘6)]1 + [_'(j (xz%) — é(SZ;y".z"‘)jj + [if-—z(ryz) _c x5 ] K
y z F ox % =%
= (22 4 270 + 3xz%j — davzk = 35 + 4k at (1~1,1).
24. If A = x%i — 2vz] + 2yzk, find curl curl A.
cutleurl A = Vx(Vxay
i i k
= Vx %8 f aﬁ = Vx {(2x+22)1 ~ (x%+232)K]
g ¥ z
Ky — 2z vz
i i k
) d 3 .
= = = o = (2x42)]
O Sy Oz
2x +2z 0 — — 2z

25. Prave: (a) Vx{(A+B) = VxA + Vx B
) Vx(dA) = (Vi) x A + ¢ (VxA).
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(@) Let A = A, +A,0+4,k, B= Bl +Bj+B.k. Then:

Vx (A+B) = (:aa;i + %j + :;‘izk) x [(4,4BY)1 + (A;+B)S + (Ag+Bk]
| i k
| 2 8 2
¥ EN X
A+R, A,tB, Agt B,
- [%(Asmsy - %(A;B?)]i + [%(AJBQ - %(%J“Ba)]j
3 3
+ [B_x(A2+BQ) - E(Aihﬂl)]k
= fa_A_ﬁ_ ._.?.’i"i]i + [BA’- — BAS]j + [33_‘4_2_ - ?.‘_4_1_]];
3y | oz 3 ox > O
[833 B BBQ]i . [831 HBBS]S . [832 _ %]k
3 oz 3 om 3 o
= VxA + VxB
) Vx (@A) = Vx(Pai+ P40+ Pam
i k
I ] o )
ey E 3z
PA, P4, DA,

[%@A@—%@Agh + [%@Ag—%(qb@h " [—%@@—%ccﬁ@]k

3 oy Oz 3z

e 2 e 2,

U, . % 4, o 4, P U,
Oy g, —p—=2— T4 2 Ty, —p—L— F4
 [pSEe i - - oAl SR S e Oy, i
. oM s, P4y Da Odp DAy
@ [ 5 o )_1 et Il w yk]
9, op ¢ X, .. . o ¢
+ [(ay 4a xr‘iﬂi + (ra;Ai - —B:As).i + (EA‘Z - gf"ii]k]

i

i k

o¢ o ¢

(Vxa + | 2X e &
¢ Ox ay Oz

il

P(Vxay + (%)xa.
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26. Evaluate V-(Axr) if VxA =0,

Let A=A i+4,j+4.k, r=xityj+zk.

69 -

i b k
Then AXr = Ay As  Aa
x ¥ Z
= (ZAQ —_— :]fAs)l + (x/‘lg — Z)‘i:_)j + (ij_ —_ xAQ)k
and Ve(axr) = '—?‘(ZAQHJ’AS) + ‘a'(XA:a‘—’-Ai) + ﬁfj’r‘h—x‘éz)
Ox By Oz
JI4, 945 Oy B4y 0d, 04,
= - == 4 i S —3 4 Pl " el
w T T T Ty 3 Y o ¥ 5
D4z 94, B4, ddg dAd, 04,
= —_— = + —_— + ——— — —
T TS TR Y Ty,
, ) Ode  Odsp_, A4, 94y Dd, 04,
= + tezhl = — =0 *+ (== — =] + (— — -k
R R i LA ik oS ol
= re(VxA) = r.curlA. If VXA =g this reduces to Zero.

27. Prove: (a) Vx(Vd) =

feurl grad & =03,

by Vo(VxA) =0 (div curl A =0),

(@) Vx (Vgy = Vx (,2—?1 +%§j +§—<fk)
i i k
- |2 2 9
ax a)" aZ
9 S P
Bx By Az
o o ¢ db 4. 2 dd 9 of d O 3 g
= ['é—y-(g) '“a';(a)]l [—a';(a) E(g)]j [a(g) Ta;(“-é';)]k
(__“Bqu - ngb H (ach - B%_‘: i+ ("ﬁ __qub i = 0
Iy 0z 223y Bzox  xdz %oy  Byox
provided we assume that ¢ has continuous second partial derivatives so that the order of differentiation is
immaterial,
i b k
by Vo (V = v.l2 9 9
&) ¥r{Vxa) Ox Oy Oz
Ai A2 Aa
4 34 o4 Q4 34 24
= V - "‘—"g — 2 i —l - '_'"E i 2 - ‘_'_1
Yy w0
= E(BAS _?.‘_4._2_] E(?ﬁih%) E(Bﬁ_?_‘d_i
Ox _(B'Jv dz By Oz O Bz O By
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o Aq
B 3y

A,

34,
5y 3

Ox Oz

S Aq
3y o

o4,
223y

z
T,

Oz Ox

0

assuming that A has continuous second partial derivatives.

Note thé similazity between the above results and the resuits (CxCm)=(CxCym=0, wherem is a
scalar and C+{CXA)={CxC)*A =0, i

28, Find cuml(rf(r)} where f(r}is differentiable.

curl (r f{r) Vox @ 1))

Vx (x ()i + v fYi + 2 fIOK

i i Kk
9 9 °
ey dy 2
x f(r y £ z (N
- y Lo o L3
=gyl v R o el T g mEgk
E_.a_fa_r__gi 2 4 o2 2=_£§Dx__=f:_x Similarl of fly d%:-f_ji
But ax_(.ar)(,ax)-,arax(v’x ry2422) vl imilarly, == and ===
Then the result = (zir—y-—yf;i)i + (x—,.i—zf—,i)j + (yf,.—x—xf;,l)ll = 8.
29. Prove V x (VxA) = —VEA + V(V-A).
i
¥ x (v _vx |2 2 2
X (VxA) 1%y %
Ay A, As
04 a4 o4 a4 o4 34
= V s Qe Y O _ s,y ode 941,
vl LR v W 5
i k|
- il 9 2
- Oz Oy Oz
s U4, o _ Odg Mg _ 24
3 oz 3z o =
D 04, o4y 9 04y ddg
553 T )
+ [ﬁ(%_%?) _ .?._%._%)]
3z ¥y o ox 2
3 P4,  Oda 9 Bds o4
28 R Rl Nk 2
YIRS TS % % % ]
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) (_32A1 h&)i . BQAQ“@), ' BQAS_@)
TSR T e %2 2 W oy
2 2 2 2 b4 4
(8A2+843)1 +faA3+:d__iIi)j+(BA1+aAQ)k
Jy 0x Oz Ox D23y Oxdy oz Jy oz
Z 2 Fd 2
L B Wk S Bay Ty Pay a3
PN X2 T 38 Y

. s 34, +8?;42+ BQASJ. . (8241 . Fd, +§“3
9% Oy Ox  Jz Ox %y NP Ozdy .  0xdz Oyon 022

Tk

b2) 2 2
= —(aig+-§y——2+aiz?}(Ali+Azj+A3k)
. D 04, D4, 04y ¢ 94, 04, D4, 9 04,  dd, 4,
I o Wt P2 —f 2 = =) k= (= + -2 4
RS Ty TR TSRS Ty TR S S,
2 94y B4, 24
S Vo4, S42 | O4g
Va+ (ax +ay +az)
= —Va -+ V(V-a)

If desired, the labor of writing can be shortened in this as well as other derlvations by writing only the i
companents since the others can be obtained by symmetry.

The result can also be established formally as follows. From Problem 47{a}, Chapter 2,

(I AX (Bx®) = B{A-C) — (AB)C
Placing A=B=V and € =F,

V x (Vxm) VVery — (V-WF = V(VoF) - TF

Note that the formula (7) must be written so that the operators A and B precede the operand C, otherwise
the formalism falls to apply.

36. If v=@xr, prove w = %curl ¥ where @ is a constant vector.

i hj k
cwrlv = Vxvyv = Ux(axr) = Vx |w, w, ws
x ¥ z

V x [(yz — gyl + (Wax —wiz)f + (Cyy — wWox)k]

i i k
- % :aa; % = 2l + woj + wgk) = 2.
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Then @ = 5V xv = 2 curl v.

This problem indicates that the ourl of a vector field has something to do with rotational properties of
the field. This is confirmed in Chapter 6. 1f the field F is that due to a moving fiuid, for example, then a
paddle wheel placed at varlous points in the field would tend to rotate in regions where curl¥ # 0, while if
curl F= 0 in the region there would be no rotation and the field F is then called irrotational. A field which
is not irrotational is sometimes called a vortex field.

2

31, 1f V-E=0, VH =0, VXE=—%—E:, VxH= E-?, show that E and H satisfy Vu = 27’:.
2
OH 2 3 ,%E JE
V V 1, = V —— = —_— V - _ - -— =
X (VXE) x A Bz) Bz( M ot az) o2
2
By Protlem 28, V x (VxE) = _VE +VV-E) = _YE. Thea VE = ’%;} .

- OE [ 9. OH Y H

Vx (V = Tx 2By = 2V . 9, oH _ _dJH
Similarly, x (Vx H) x(azj ar( x E} Bs( 33) =
2

But Vx (VxH) = —V'a + V(Vm = ~V’R. Then VH = %;l
£

The given equations are related to Maxwell's equations of electromagnetic theory. The equation
2

o oy 02 oR

ig called the wave eguation.

MISCEL.LANEOUS PROBLEMS.

32 (g) A vector V is called irrotational if curl V=0 (see Problem 30). Find constants e,b,c so that
V = (x +2 +az)}i + (hx — 3y — )] + (4x +cy + 20k
is irrotational.

¢h) Show that V can be expressed as the gradient of a scalar function.

i i k
(@) cul Vv = VxV = éa; a% % = e+ + (a—-4)i + (b—Dk

%+ 2y +az bx —3y—=z 4x +eoy +22
This equals zero when o=4, 5=2, ¢=—1 and

V o= sty +d2di o+ (203 —2)f + (4 —y + 20K

(b) Agsume ¥V = V(i) = ,gipi + :8_(;)] +a_q—l7k
X

3y Oz
P op o
Then Iy =X = g+ 2% +42, () =— = 2x— 3y — 2, () == = dx —y + 22z,
(5 . y ) S ¥ ) 3, ¥
Integrating (1) partially with respect to x, keeping y and z constant,
%2
4 P = oty + oz 4 fiy, =)

whete f(v,z) is an arbitrary function of ¥ and z, Similarly from (2) and (3),
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32
Iy — %— - ¥z + glx.z)

(5 ¢

(3} b = 4wz — yz + z'_2 + hix,y).

Comparison of (4), (5) and (6) shows that there will be a common value of ¢ if we choose

2 2 2 o
fly.2) = —%— +a7, gae) = 3‘2— +27, hxy) = "_2_3%
50 that
2
¢:i;—§2L+ZQ+2xy+4xz——yz

Note that we can also add any constant to ¢b. In general if VxV =0, then we can find @ so that V=V,
A vector field ¥V which can be derived from a scalar fleld ¢ so that V=V is called a conservative vecior
field and @ is called the scalar potential. Note that conversely if V=Vb, then Vx V = 0 (see Prob.27a).

33. show that if ¢ (x,y,z) is any solution of Laplace’s equation, then V¢ is a vector which is both
sclenoidal and irrotational,

2
By hypothesis, & satisfles Laplace’s equation V'¢d = 0, 1.e. V-(V) = 0. Then Vb is solenoidal (see
Problems 21 and 22).

From Problem 27z, Vx (V) = 0 so that V¢ is also itrotational.

34. Give a possible definition of grad B.

Assume B = Byi + B.,j + Bzk. Formally, we can define gstadB as

Ve : (,—a%i +_a%j +-é8;k)(81i+82j + Bgk)
= %11 + %ij + %—%ik
%ki %ki e_;:n

The quantities ii, ij, etc., are called snit dyads. (Note that ij, for example, is not the same as i)
A quantity of the form

ailil' + amij + amik + a?lji + 322_'” + agjk + amki + a:azkj + amkl(

is called a dyedic and the coefficlents @i, a0, ... are its componeats. An array of these nine compo-
nents in the form

14 Q1o g
Aoy ) Tag
a1 Ggp a3

is called a 3 by 3 matrix. A dyadic is a generalization of a vector. Still further generalization leads to
triadics which are quantities consisting of 27 terms of the form @ii4 P11 + @oqq jii +.... A study of how
the components of a dyadic or triadic transform from one system of coordinates to ancther leads to the sub-
ject of tensar analysis which is taken up in Chapter 8.
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Let a vectot A be defined by A = A,i + 4y + Ask and a dyadic @& by
o = ailii + (Iigij + amik + agiji + azgjj + agsjk + ﬂgj_ki + 03ij + %Skk
Give a possible definition of A@.

Formally, assuming the distributive law to hold,

A = (A0 + 4oj + K- = Agi-@ + Azj @+ Ak-®

As an example, consider i-®. This product is formed by taking the dot product of 1 with each term of

& and adding results. Typical examples are - aqqii, i-a0lds i-agji, 1+ ag3k1, etc. If we give mean-
ing to these as follows

{egpil = op(i-Di = aqql gince i-i =1
{rapdi = me(i-D3 = Ao} gince i-i =1
iegpili = ax(i-Di = 0 singe i~§ = 0
i-amki = a@pd-k)§ = 0 since ik =10

and give analogous interpretation to the terms of j-@ and k-, then

AP = Agagit oy it oK) + Aolap It ap it oK) ¥ Agfan 1+ aag j+ a5 K)

(Ay aqy + AoGoy +Azaa) 1+ (Aqayo + Agaop + Azaa) 1 + (Aymug + Agtps + Agtm) k

which is a vector.

(1) Interpret the symbol A-V. () Give a possible meaning io (A-V)B. (e) Is it possible to
write this as A-VB without ambiguity?

() Let A = 411 + A,§ + Azk. Then, farmally,

AV (Agi +A21+A3k}-(—§;i+—§;j +—E’;k)

AI% * AQ% + Aoy

is an operator. For example,

Note that this is the same as A-V@.
(by Formally, using (a) with  replaced by B = Bii+ BJ+ Bsk,
AVE = (42 + AQ% + 458 = 12+ AQ%B; ¢ 4B
= (Ai%% +A9% +r‘laB§;)i + (Ala—.;f +Ag—a-?%2-+ Ag%)j + (,41%% +,423;;3 +A3§§§"k

{¢y Use the interpretation of VR as given in Problem 24. 'Then, according to the symbolism established
in Problem 35,

n

A-VE (411 + A5 + Agk) - VB = Ai-VB + A2j-VB + Ak -VB

3 3
Ky + AQ(%B—ii + -EQ— B_qu) + Ag(“"ﬂi + F-a-ikj + %
; y 3z

9By 3B, ©Bg -
dy By Oz Dz

A T T

)
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(b)

which gives the same result as that glven in part (5). It follows that (A-V)IB = A-VB without ambi-
guity provid_ed the concept of dyadics is introduced-with properties as indicated,

37. I A = 2zi — «"yj + 2k, B =x% +yz2] — ayk and & = %%2°, find

(@) (A-V)yob,

@) A-Vygp

) A-V

b A-Vo, () (BVA, @) (axVyp,

{2yzi — xp'yj + x7ky v (

[(2yzi — 2% i + x27K) (%1 + a—ij + %k)]qb

(Zyz;a— - x?yi + xz?ﬁ

23
A 3y TR Y

)

(Y Ax Vd,

2yzi(2x2yzs) — By ZLaPy®y 4 xzzi@xgyzn)
3 3

X

(Zyz)(aryz®) — (FCyy(e) ¢ (x22)(68y27)

8279’234 _ 2x4-yzﬂ + BxSyZA-

3. ¥

—-] + —
O

eyt — oty 4 6yt

1
oy
(yzi —~ 'y + 2"k « (day2®i + 2775 + exyeCk)

9P
+ “a—;k)

Comparison with () illustrates the result (A-Vyd = 4.Vip.

te) (B-V3A

2 ; 9;,8,,3
[ec°1 + yzj xyk)c(ax1+ayj +azk)}A
20 .0 _ . 9, _ 204 ,OA
O a. TRy, TEA 3w T3

oA
73

- x

=2y i + W)+ oya(2zi - 22) — (YL + Azk)

(23(22 — nyg)i - (2::5)' + x?yz)j + (xzzp -

For comparison of this with B-VA, see Problem 36 (c).

(@) Ax Vg

J

[(oyzi — a2 j + x2PKy < (=2 +
x
i i k
vz ——ny xz? gD
2 a <
3 3 3

2
y

o 3 e o
~oy F e (e ZE =2 Sy e (e T

— (6% + 255y + (axly:8

[i(—fy%—xz =)t jfoQ%—

i

2.

£+ 2Kyl
P

dy

3

c

— 12x2y223 Vi

2xgyz)k

%
Ay

+ (afyst

2yz%) + k(2yz% +x'2y—§;):|q')

o
I
+ xyax

Yk

+ 4Pk
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. - o [ =]
ey Ax Vb = (2yzi — Ky § o+ 227 k) X (—dfl + __CE]_ + T\?k)
‘Ox 'ay oz
i i k
= 2yz -xzy xz°
w %
ax ay BZ
2% 3 3 ¥ 20 3
= (—-xzya—'z — xz?gji + (xZQ‘B_x —_ 2yz£).] + (zyz—:a; + xzyajk

I

— (Eix‘s'fz2 + 277 ¢ (fix?'yz'5 - IZnyQZB)j + (4:\?3*24 + 4x‘q;v2z'q)k

Comparison with (d) illustrates the result (AxWyd = A x V.

INVARIANCE

38. Two rectangular xyz and x'y'z' coordinate systems having the same origin are rotated with re-
spect to each other. Delive the transformation equations petween the coordinates of a point in
the two systems.

Let r and r' be the position vectors of any point P in the two systems (see figure on page 58). Then
since r= r’, :

(h ity o 2K = x4 oyi o+zk

Now for any veetor A we have {Problem 20, Chapter 23,
A = (A o+ oA+ (A-KY K

Then letting A = 1,1,k in succession,

8]
i

d-ini o+ @i o+ d-EHE o i+ Id + K
G-ivi + d-ivi o+ Gk = Lol + lpgd + ook

ki1 o+ weihi o+ (koK' K

i
(23 3
k

It
1]

1!131‘I + ngjj + lggk:

Substituting equations (2) in (1) and equating coefficients of i, ik we find

i

(3 x = lux + gy *laz, y' = lpx + iy ¥ laz, 2" = fggx + loey + las?

the required transformation equations.

39, Prove i’ = Ilj41 + 123 + 1k
§° = Il + load + bsk

lgal + laad + lnk

r---
I

For any vector A we have A = (A-idi + (ADF + (AK)E.

Then letting A = i,j,k’ in succession,

H

i o+ apio+ d-k Loi + lod + ligk
Geiyi + G-Di o+ Bk = lad t e ¥ bk
K-iyi + @epio+ KK Iged + loo + lask

e
1] 1]

o
U
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3
40. Prove that @l lﬁ,m lf,:m =1 if m=n, and 0 if m#n, where m and n can assume any of the values
1,2 3. -

From equations (2) of Problem 38,

il = U= (ud 4 lged + gk’ e (Gaad’ + Loyl + Iagk))
= g g + 1
-3 = 0 = ot + I + lggk") - (Ugoi + Lol + LK)

= hals + ol + Il

ik = 0 = (gl + i+ I kY e i+ Ll + gk’

= lglg + bglog + Loyl

These establish the required result where m=1. By considering JeLi-f,i-kK,k-i, k-7 and K-k the result ecan
be proved for m=2 and m=3,

1if m=n

3
0 1f mtn the result can be written ?El Lom L = )

By writing Sm = { T

The symbol Swm is called Kronecker’s symbol.

41. I ¢(x,y,2z) is a scalar invariant with respect to a rotation of axes, ptove that grad< is a vector
invariant under this transformation.

By hypothesis ¢(x,5,2) = @'(x',%", 2. To establish the desired result we must prove that
¥ o s 8, %, ¥

—_ —_ - —_ _r
FRRE W W R RN

Using the chain rule and the transformation equations (3) of Problem 38, we have

o | e | B¢ Yy  bgm | &, L, %, o,
¥ % %' B L Y
9 | o %'y | 9’ o'
% Ty %y Ty, v A
I 9 %' B¢’ By v 3 3’ o e

= - ¢

3 3 o: % 3 T B 3.

ax.' khi] 'ay; 23 azr '1"3:3

Multiplying these eguations by i,j, k respectively, adding and using Problem 38, the required result fol-
lows.
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SUPPLEMENTARY PROBLEMS

42, T b = 2z —+'y, find Vb and | Vb | at the point (2,-2,-1).  Ans. 10i — 4 — 16k, 2v/03

43, TEA = 2°i — 3yzj + 222k and @ = 2z —°y, find A -V and Ax Vb at the point (1,—1,1).
Ans. 5, T —]7—11k

40, 1§ F =2+ and G = 2% — %92, find (@) V(F+G) and (b) V(FG) at the point (1,0,~2).
Ans. (a) —4i + 9 +k, (b) —8j

2
45. Find Vel dns. %r

46. Prove Vi = LT,

r

6
-

VF

47. Evaluate V(37— 4vr + ——). Ans. (6— oo _ o=y

48. 1 VU = 2*r, find U. Ans. 7/3 + constant
. , . t : : i 1
49. Find G() suchthat Vg =5 and @(1)=0. Adas. Q=505
r r

=2+ 7t z2

50. Find Vi where = (x7 + ¥+ 2%y e dns. (2= e Tr

1. 1t Vb = 2eya® i + 2200 + adyd” k, find Glry.2) if ¢(L-2.D) =4, Ans. G = Py + 20

i

52. 1f Vel = (y2— 2uyz)i + (3 + 20y —472")j + (62° — 3a%yz" )k, find .
Ans. l7b = ny - xzyzﬁ + 8y +(3/2) z* + constant

53. If I is a differentiable function of x,y,z , prove VU.dr = d7.

54, If F is a diffetentiable function of x,y.z,t where x,y,z &re differentiable functions of ¢, prove that
dr oF

dr
= = e
dat o +V dt

55. If A is a constant vector, prove V(r <AY = AL
56. ¥ A(x.v,2) = Ay + A + Ak, show that dA = (VA,-dnyi + (Vdp-dng + (VAgednk.

37. Prove V(E) =

¥

CVE =LV 1t ¢ 40,

58. Find a unit vector which is perpendicular to the surface of the paraboloid of revolution z = x” +y2 af the
point (1,2,5).  Ans, DS H K
V21

59. Find the unlt outward drawn normal to the surface (x — 1)2 + y"’ t(z+ 2)2 = ¢ at the poj.ni: (3,1,—4).
Ans, (21 + 1 — 2KY/3

60. Tind an equation for the tangent plane te the surface xz” + xQ:y = z — 1 at the point (1,-3,2},
Ans, 2x —y—3z+1 =20

61. Find equations for the tangent plane and normal line to the surface z = % +y2 at the point (2,—1,5}.
x—2 _y+1 _z—-3
4 —2 -1

Ans. d4x — 2y — 2z = 5, or x =442, y=—2—1, z=—t+5
\ i

62. Tind the directional derivative of @ = 4xz" — 3x°y°z at (2,—1,2) in the direction 2i—3j + 8k.
Ans. 376/7

63. Fipd the directional derivative of P = 4e2%~ Y% Z 4t tne point (1,1,~1) in a direction toward the peint
(—3,5,8). Ans. —20/9



64.

65.

66.

67.

68.

69,

0.

71.
T2,
3.
4.
5.
76.
1.
78,
8.
80.
81.

82.

83.
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In what direction from the point (1,3,2) is the directional derivative of ¢ = 20z —y® a maximum? What is
S
the magnitude of this maximum?  4ns. In the direction of the vectar 4i — 65 + 2k, 2v 14

Find the values of the constants s,b,c so that the directional derivative of @ = axy” + byz + c2%” at
{1,2,—1) has a maximum of magnitude 64 in a direction parallel to the z uxis. Ans. a=8, b=24, ¢= -8

Find the acnte angle between the surfaces nyz = 3x+z° and BxQ—y?+2z =1 at the point (1,-2, 1),
3 Ve O !
Ans. al¢ co8 —— = = arc cos — = T9°55
V14 V21 14

Find the constants a and 5 50 that the surface ax® — bvz = {a+2)x will be orthogonal to the surface
4x% +2° = 4 at the point (1,~1,2).  dns. a=5/2, b=1

(a) Let = and v be differentiable functions of x,y and z. Show that a necessary and sufficient condition

that # and v are functionally related by the equation Flu,vy=0 isthat Vux Vo = 0.

(b) Determine whether » = are tanx + arc tany and v = 1x_+gy

Anrs. (bY Yes (v =tan u)

are functionally related.

(@) Show that a necessary and sufficient condition that u(x,y,z), w(x,y,z) and w{x,y,z) be functionally re-
lated through the equation Flu,w,w0) =0 is Vu VexVw =0,
() Bxpress Vu VoxVw in determinant form. This determinant is called the Jacobian of u,v,w with re-

spect to x,y,z and is written ?JM’—%--) or f{2Y0y

(x|y|z) x’ylz

(c) Determine whether u =x+y+z, v =2"+y?+z” and w = xy +yz +zx are functionally related.
Ou  Ou O
ox  dy O
dv %v B 2

Ans, By |22 QL o —o—tw =

s, (B) S ay 3 () Yes {u"—v—2w =0}

Sw  dw  Bw
O9x 3y I

If A= 3xyz° i + 2y” § ~ xgyz k and ¢ = 3x°— vz, tind (2)V- A4, () A-VD, () V- (@A), (d) V- (Vo)
at the point {1,—1,1), Ans. (@) d, (b)Y =15, () 1, () &

Evaluate div (24%zi — xygz i+ 3y29 k}. Ans, dxz — 2xyz + 6yz

If ¢ = 3%z — y929 +4x3y +2x — 3y — 5, find VQC;D. Ans. Bz + 2xy — 2:° - Ssz

Evalvate VQ(In ry.  Ans. 1/

Prove V rfi= r(r+1)r™ ™% whete n is & constant.

HF = @3y — 2 + @ +9%)j — 2%k, find V(V-F) at the point (2,-1,0y.  Ans. —6i + 24j — 32K
If @ is & constant vector and v = e r, prove that divy = 0.

Prove VQ(c;th;) = qz')VQL?/J + 2V Vyr + L;’;VQQ'J.

I U=3+", V=2 — 2y evaluate grad [(grad U).(grad 1)),  Ams. (6yz2—12¢)i + 6x7) + 12xyz k
Evaluate V'(rﬁr). Ans. 617

Evaluate V- [rV(l/rg)] . Ans. 30~ %

Evaluate VZ[V- (r/rzj.] . Anrs. 2r7%

If A=r/r, find grad divA. Ans. —2+ %1

{a)} Prove V?f(r) =4f + 2 ﬂ. (b} Find f(r) such that ng(r) =0.
dr2 rodr

Ans. f(ry= A + B/ where 4 and B are arbitrary constants.
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84. Prove that the vector A = 33:4221 S BnyQIi i= solenoidal.

85. Show that A = (%% +8wy"2)i + (32'y — 3y)) — (4¢°2% + 2¢°2)k is not solenoidal but B = xyzZ A 1s
solenoidal.

86. Find tie most general differentiable function f(r} so that f(r)r is solenoidal.
Ans. firy= C/r7 where C is an arbitrary constant.

: —xi—v] . . .
87. Show that the vector field V = —/x;-y_“‘ is a "sink field"". Plot and give a physical interpretation.
¥Ya© ot yg

88. T/ and V are differentiable scalar fields, prove that Vi x VF is solenoidal.

89, If A = 2xz2i — yzj + 3xz®k and ¢ = x"vz, find
@y Vx A, (&) curl (GAY, (C}VX(VXA), (d)V[A-cml A1 (e) eurl grad (DAY at the peint (1,1,1).
Anrs. (@yi+j, (&) 5i— 3j — 4k, (c) 51 + 3k, (y—2i+i+8k, ()0

00, Tt F = yz, G = ay—3:7, find (@) VIVF. VO], (b)V-[(VF)x(}?G)], 3y Vx [(VEy<(¥ae)].
Ans. (@) (2z +30% — 120y2)i + (dmyz — 6x"2)] + (267 +2° — Exy)k
by 0
{c) (x°z — dxyz)i — (12xgz + 2xyz)j + (2xy2 + 12yz2 +xk
91. Evaluate Vx(r/r )., Anrs. 0

92. For what value of the constant 2 will the vector A = {axy =) + (@—=2)x°§ + (1—a)xzZk have its
curl identically equal $o 2ero? Ans. a=4¢

93. Prove cwrl (@ grad &)= 0.

04, Graph the vector fields A =xi+yj and B=yi-— x}. Compite the divergence and curl of each vector
field and explain the physical significance of the results obtained.

5. 1f A = 2%i +y:°i — 3xyk, B'=yi— yzi + 2k and @ = 2¢° +yz, find
@ A V), ) a-Vya, © (AVIB, @ BA-Y), © (V-A)B.
Ans. (@) 4%z + yzh— 3xy2,  (b) 4xz 4yt - 3xy” (same as (a)),
(c) 297250 + (32— yz*yj + 2Pz Kk,
(d) the operator (x%%zi — x%vz2§ + %%z k).ai + (3220 — vt + 2y® k)aﬁ
e 4 id

+ (—3xy3i + Bxygzj - Gx?:y Ii)i

(o ¥
5

(e} (2xv%z + ygza)i — (ny29+yz4)j + (4x%z + 2wz Mk

96. T A = ye”i — 3xz”§ + Zuyzk, B =3¢+ 4zJ — xyk and & = xyz, find
@) Ax (V) &) (AxVYd, () (Vxayx B, (d) B:-VxaA.
Ans. (a) —52yz i + xy%7 ) + dxy® K
() —5x%yz21 + 0% § + dxyz"k (same as (a))
(e) 16271 + (87yz — 12x2%)j + 3WZ°K @) 24x%% + duvz’

97. Find Ax(VxB) and (AxV) IB at the point (1,-1,2), if A = 2221+ 2] — 3xzk and B =2xzi + 2y2f — 7K.
Ans. Ax(VxB) = 18i - 12j + 16k, (AxV)xB = 4j + 76k

08. Prove (v-Viv = 3Vo¥ — vx (Vxv),

99, Prove V-(AxB) = B-(VxA) — A-(VxR).

100. Prove Vx(AxB) = (B-V)A — B(V-4) — (aA-V)B + A(V-BY.

101. Prove Via-B) = B-Via + (A-V)B + Bx(Vxay + Ax (VxB).

102. Show that A = (Bxy +27)i + (3% — 2)j + (3x2° — y)k is irrofational. Find ¢ such that A = Vb,
Ans, P = ay + xz° — yz + constant
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Show that E = r/r? is irrotational. Find & such that E = — Vb and such that c(a)= 0 where a> 0.
Ans. P = In(a/n

If A and B are irrotational, prove that Ax B is solenoidal,
If f{r) is aifferentiable, prove that f(r)r is irrotational.

Isthere a differentiable vector function V such that (a)curl ¥ =r, (bycuwrl ¥V = 2§ +j +3k? If so, find V.
Ans. (@Y No, BYV = 3xj + (2y —xYk + Vb, where ¢ is an arbitrary twice differentiable function.

Show that solutions to Maxwell's equations
1E gy s v
=1 dE = _1dH *H=0, V'E = 47,
VxH = de " xE ¢ O P
where 0 is a function of x,y,2 and ¢ is the velocity of light, assumed constant, are given by

E = -Vp — cl%—‘: H=Vxa

where A and ¢, called the vector and scalar potentials respectively, satisfy the equations

. o
(I)V'A+la—¢=0, (2)V2¢—i2%—;p=—4np, (B)VQAzlE’—A-
4

€ 9t c e? 2

{z) Given the dyadic & = ii+jj+kk, evaluate r-(®-r) and (r-$)-r. (b)Is there any ambiguity in
writing r-®.r? (c) What does r-@.r = 1 represent geometrically ?

Ans. (@YE-(&-T) = {r-F)-r = £° +¥2+22, (b) No, (¢) Sphere of radius one with center at the origin.

@1 A=xzi—9y°j +y°k and B = 2:°1 — ayj + °k, give o possible significance to (Ax VB at
the point (1,~1,1).
{5) Is it possible to write the result as Ax (VB) by use of dyadics ?
Ans. (@) —41i — ij + 3ik — ji — 4§i + 3%k
(b) Yes, if the operations are suitably performed.

Prove that &(x,y,z} = %+ y9 +22 is a scalar invariant under 2 rotation of axes.

If A(x,y,2)is an invariant differentisble vector field with respect to a rotation of azes, prove that {a) div A
and (b) curl A are invariant scalar and vector fields respectively under the transformation.

Bolve equations (3} of Sclved Problem 38 for x,¥,2 11_1 terms of x',y’, 2,
Ans. x = L;x' + Iy + Iy 2, ¥ = lox + oy +lgpz’, z = hg '+ Lgy' + log 2
If A and B ate invariant under rotation show that A+ R and Ax B are also invariant,

Show that under a rotation

a a a .fa f’a .FB
L R R S S
T v R A R

Show that the Laplacian operator is invariant under a rotation.



Chapter 5

ORDINARY INTEGRALS OF VECTORS. Let R{z) = Ry(mw)i + Ro(u)i + Ra(u)k Dbe a vector depending
on a single scalar variable u, where Ry(u), Ro(u}, Rg(u)y ate
supposed continuous in a specified interval. Then

fR(u)du = ifR-_,(u)dn + ijg(u}du + kfRs(u)du

is called an indefinite integral of R(u). If there exists a vector S(u) such that R(z) = R%(S(u)), then

fR{u)du = fj%(S(u))du = S(u) +c

where ¢ is an arbitrary constant vector independent of u. The definite integral between limits u=a
and =5 can in such case be written

b b b
f Ru)du = f E(S(u))du - s +cl = 8K - 8@
2
@ a

This integral can also be defined as a limit of a sum in a manner analogous to that of elementary in-
tegral calculus.

LINE INTEGRALS. Let r(u) = x(uw)i + y(u)j + z(w)k, where r{u) is the position vector of (x,v.2),
define & curve { joining points P, and P,, where u=u, and u=u, respectively.

We assume that € is composed of a finite number of curves for each of which r{z) has a contin-
uous derivative. Let A(x,y,z) = 431+ A,§ + Azk be a vector function of position defined and con-
tinuous along €. Then the integral of the tangential component of A along C from P to B, written as

Py
J Adr = fA'dl' = f Ai dx + AQ dy + As dz
7 c c

is an example of a line integral. If A is the force F on a particle moving along €, this line integral
represents the work done by the force. If C is a closed curve (which we shall suppose is a simple
closed curve, i.e. & curve which does not intersect ifself anywhere) the integral around ¢ is often

denoted by
}-A'dr = f Ay dx + Aydy + Aadz

In aerodynamics and fiuid mechanics this integral is called the eirculation of A about C, where A
represents the veloeity of a fluid.

In general, any integral which is to be evaluated along a curve is called a line integral. Such
integrals can be defined in terms of limits of sums as are the integrals of elementary calculus,

For methods of evaluation of line integrals, see the Solved Problems.

The following theocrem is important.

82
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THEOREM. If A=V¢ everywhere in a region R of space, defined by a4 £ x £ a, by Sv € bs,
¢ £ 2% ¢y, where ¢(x,y,z) Is single-valued and has continuous derivatives in R,
then P>
1 .[ A-dr is independent of the path C in R joining Poand P,.
1

2. i’ A-dr =0 around any closed cutve C in R.

In such case A is called a conservative vector field and ¢ is its scalar potential.

A vector field A is conservative if and only if VxA=0, or equivalently A=V, In such case
Adr = Aydx + Aydy + A;dz = do, an exact differential. See Problems 10-14.

SURFACE INTEGRALS. Let S be a two-sided surface, such as shown in the figure below. Let one

side of 5 be considered arbitrarily as the positive side (if § is a closed
surface this is taken as the outer gide), A unit normal n to any point of the positive side of S is
called a positive or outword drawn unit normal,

Associate with the differential of surface
area 4S5 a vector S whose magnitude is 49 and
whose direction is that of n. Then d8 = n dS.
The integral

[frn - ffanes

g

is an example of a sutface integral called the
flux of A over S. Other surface integrals are

gws, {mds, ﬂAxds

where ¢ is a scalar function. Such integrals can
be defined in terms of limits of sums as in ele-
mentary calculus (see Problem 17).

et

ssryeckiank

The notation # is sometimes used to indicate integration over the closed surface S, Where

S
no confusion can arise the notation f may also be used.
by

To evaluate surface integrals, it is convenient to express them as double integrals taken over
the projected area of the surface S on cne of the coordinate planes. This is possible if any line per-
pendicular to the coordinate plane chosen meets the surface in na more than one point. However, this
‘does not pose any real problem since we can generally subdivide § into surfaces which do satisfy
this restriction.

VOLUME INTEGRALS. Consider a closed surface in space enclosing a velume V. Then

[[Fa o ffon

are examples of volume integrals or spuce integrals as they are sometimes called. For evaluation of
such integrals, see the Solved Problemns,
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SOLVED PROBLEMS

2
1. If Rn) = (u—uDHi + 2° i — 3k, find (a) fR(u) du and (b)f R(u) du .
1

() fR(u} duy = f [w—uDi+ 23 — 3% du
if(u-—-ug) du + jf2u9 du + kf—E du

2 ) a
= i(L—%+Ci) + j(%+02) + Ki{—3u *+cg)

2
2 i} A
= (”5-5‘3—)1 + E‘Z—j — 3wk + ¢4 + csi *+ cak
1&2 i u4
= = = + =} - k +
(2 i 23 Ju ¢

where © is the constant vector cq i + cod t ea k.

ff’ EENN A "2
(b) From (e}, s R{u)du = {—2---3-)1 R uk + ¢ s
T B (A 7 1.
- [ -Dir -k rel - (- Lot + i—3mk +el
= =5y o+ By — 3k
Another Method.
2 2 2 a J‘Q
_ - . -
J; R{uydu = l_f1 {w—uyds + "_J‘i wdu + K s 3du
2 2 Z
_ o2 W8 ut - 5 . 15,
S R (> 1R T 21t S B B
2. The acceleration of a particle at any time t20 is given by
a = g—} = 12cos2ti — 8sin2ti + 16tk

If the velocity v and displacement r are zero at ¢=0, find v and r at any time,

iflzcoszzd: + jf-—ssinzzdr, + kflﬁzdr

Gsln2ci + dcos2tj + 8Lk + ¢

1

Integrating, ¥

Putting v =0 when =0, we find 0 = 0i +4] + 0k +eq and €3 = —41.

Then v = 6sin2:1 + (4cos2t—4)1 + 8%

gsin2¢i + (4cos2t—4)§ + 82k,

u

dt
g0 that dt

L}

Integrating, T 1f 6sln2edt + jf(4 cos 2t — 4y dt + kf g2 de

—3cos2¢tl + (2sin2c—4nj + %zsk + o

Putting r=0 when =0, © = 31 + 0j + 0k + cg and cz=31.
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Then t = (3—23cos2:)}i + (2sin2t—48)j + g:ak.

3. Evaluate fo dAg

d?
2
i) da A dA dA dA
2 =3 = TR T = opawi
dzmx dt) AX G2 at dt T
dA dA
Integrating, fo = f —(Ax——)d: = AX—/— + ¢.
de? dt

4. The equation of motion of a particle P of mass m is given by

m% = finn

where 1 is the position veector of P measured from an origin O, ry is a unit vector in the direction r,
and f(r) is a function of the distance of P from O.

{(a) Show that r x ﬁ—: = ¢ where ¢ is a constant vector.

(b) Interpret physically the cases f(r) <0 and f(r)>0.
(¢) Interpref the resull in (@) geometrically.
(d) Describe how the results obtained telate to the motion of the planets in our solar system,

2
{2} Multiply both sides of m = f{ryr; by rx, Then
2

mrxé? = f(Nrxr = B

since r and ry are collinear and so rxry = . Thus

& _ 4, dr
rxdj—ﬂ and dc(rxdt)_o

Integrating, r x -j{ = ¢, where ¢ is a constant vector. (Compare with Problem 3).

2
by 1f f(r) <D the acceleration j—t; has direction opposite to ry; hence the force is directed toward O and

the particle is always ettracted toward 0.

If f(r)> 0 the force is directed away from O and the perticle is under the influence of a repulsive
force at 0.

A force directed toward or away from a fixed point O and having magnitude depending only on the
distance r from O is called a central force.

(c) Intime A¢ the particle moves from M to N (see ad- z o ot
joining figm'e). The area awept out by the position 9%%\%&@@3&«%&’6««9{328 ﬁi&_wwgzv\%wwwm&«@
vector in this time is approximately half the area of 3 '
a parallelogram with sides r and Ar, or jr x Ar,
Then the approximate atea swept out by the radius

vector per unit time is $r x Q. hence the instan-

Ar’

taneous time rate of change in ares is

A d it vrad
lim %I‘ XT: = E‘rx 4z = %rxv iy «mmwmwv»wgﬁ

dt %gww@cemmw»@&ﬁ

where v is the instantaneous veloeity of the parti-
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ele. The quantity H = Jrx g = 4rx v is called the areal velocity. From part (a},
Areal Velocity = H = {rx % = constant

Gince T-H = 0, the motion tekes place in a plane, which we take as the xy plane in the figure above.

A planet {such as the earth) is attracted toward the sun according to Newton's universal law of gtavita-
tion, which states that any two objects of mass m and ¥ respectively are atiracied toward each other

GMm
.z

with a force of magnitude F = , where r is the distance between objects and & is 2 univetsal

constant. Let m and M be the masses of the planet and sun respectively and choose a set of coordl-
nate axes with the origin O at the sun. Then the equation of motion of the planet is

&
dt?

2
m dr GMm r or
de? 2t

GM

- r
Pt

assuming the infiuence of the other planets to be negligibie.

According to part (¢), a planet moves around the sun so that its position vector sweeps out equal
areas in equal times. This result and thal of Problem 5 are two of Kepler’s famous three laws which he
deduced empirically from volumes of data compiled by the astronomer Tycho Brahe, These laws ena-
hled Newton to formulate his universal law of gravitation. For Kepler's third law see Problem 36.

5. Show that the path of & planet around the sun is an ellipse with the sun at one focus,

From Problems 4(c) and 4{d),

dv cH
) @ - T el
(2% rxv = ZH = h
Now r = @ I, & that
ow r=rrt, o =7 7, T sotha
dr. d d
(3) B = txv = rr1><(rd—:+irl) = rQriinL
dv GM d
From (I}, 5 xh = -?-rix h = —GMrX (1nx -E:i
drq dry dry
= —GY - _ * —— = GMIZ2
[cey dt)l'i (r1+19) da] M T
using equation (3) and the fact that re. %‘-} = 0 (Problem 9, Chapter 3).
. . dy d
But sinee h is a conatant vector, 7e xh = E(vx hy so fhat
d o
Zxny = GM T
Integrating, vyxh = GMry +p
from which r-(vxhy = GMrt-rq +r-p

- GMr +rn-p = GMr 4+ rpcos?

whete p is an arbitraty constani vector with magnitude p, and 5 is the angle between p and ry.

Since r+(vyxh) = (¢xv)-h = h-h = hg, we have hg = GMr + rpecos & and

2 KGM

"% GM+pcos O T 14 (p/GM)cos O
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From analytic geometry, the polar equation of a conic

The orbit is an ellipse, parabola or hyperbola accord- 10
ing a5 € is less than, equal to or greater than one.
Birce orbits of planets are closed curves it follows
that they must be ellipses,

¥
section with focus at the origin and eccentricity € is
F o F.;“ﬁ where a is a constant, Comparing this Planet
with the equation derived, it is seen that the required e )
orbit is a conic section with eccentricity €=p/GM. ) x
\i

fZ

1+z=cos§

Ellipse 5 =

LINE INTEGRALS

6. If A= (3« ey — I4yzj + 2Wxz2k, evaluate fA-dr from (8,0,0) to (1,1,1) alongthe follow-
ing paths € c
(a¢)y » =t¢, y=t2, z=£.
(b) the straight lines from (0,8,0) to (1,0,0), then to (1,1,0), and then to (1,1,13
(e) the straight line joining (0,0,00 and (1,1,1).

f A-dr
¢

il

f[(3x2+€ry)i — 14yz§ +20%2%k ] (dxi + dy] + dz k)
8

f(3x2+6y) dx — ldyzdy + 20xz2 4z
¢

(@) If x=¢,y=¢", z=¢°, points (0,0,0) and (1,1,1) correspond to =0 and £=1 respectively. Then

f A-dr
[

Ir

i
f (32 +6:%) de ~ 46T Py d(2) + 200N d(°)
=0

It

1
f 92 dt — 288 dr + 60 4t
=0

1
f (0285 +60:5Y de = 32 — 47 + 6 ' = 5
t=0 °
Another Method.
Along €, A=0671— 1421 + 2087k and t=sxd +vj+ 2k =2 + 2§ + K and dr = (i + 26 + 22 K) de.

1
Then f A-dr f (9% — 146° 1 + 2067 k)« (1 + 20 + 367 K) de
T

[

t=0

1
= f (0F —28:%+ 80N de = 5
8]

{b) Along the straight line from {0,0,0) to (1,0,0) =0, z=0, dy=0, d2z=0 while x varies from 0 to 1. Then
the integral over this part of the path is

1 1 1
(357 +6(0)) dx ~ 14(0)(0)(0) + 20x(012(0) = f 32° dx = A° o - 1

X=0 x=0

Along the straight line from (1,0,0) to (1,1,0) == 1,z=0,dx=0,dz=0 while v vaties from O to 1.
Then the integral over this part of the path is T—

f (3(1°+6y)0 ~ 14y(Oydy + 20¢1)0% 0 = 0
3.’:0
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Along the straight line from (1,1,0) to {(1,1,1) x=1,y=1, dx=0, dy=0 while z varies from 0 to I.
Then the integral over this part of the path is
1

1 1 a
20 a
(3P +6(1) 0 ~ 14(D) a(0) + 2001 2% de = f w2d = BE| - W
220 20
Atidlng, A+dr = 1 + 0+ m - ,2,3
, 3 3

(¢} The straight line joining (0,0,0) and ¢1,1,1) is given in parametric form by x=¢,y=¢, z=t. Then

f A-dr
o

1
B +6e) dt — 14y de + 20 @Y d

=0}
t * 13
= f 3%+ 60— 1467+ 200°) e = (6t—117+20°) dt = ¥
=0} =0

7. Pind the total work done in moving a particle in a force field given by F = 3xyi — bzi + 10xk_
along the curve x =¢2+1, y = 2%, z=¢% from 1=1 to t=2.

Tatal work = fF-a!r = f(3xy1-—5zj+10xk)-(dxi+dyj+dzk)
o &

= xy dx — Szdy + 10xdz
Y
2

S+ (22 dP+D — BT + 107 +1) de°)

t=

W]

(12:% + 106+ 126° + 3065y de = 308

2
i
8. If F=3xyi — vy, evaluate f F-dr where C is the curve in the xy plane, y = 2x°, from (0,0)
to (1,2}, ¢

Since the integration is petformed in the xy plane (2=0), we cantake r = xi1 + yj. Then

f F-dr = f (Bxyi—ygj)-(dxi +dy )
¢ ¢
— 2
= f ey dx — y° dy
¢

First Methed, Let x=t in y= 3x?, Then the parametric equations of C are x=r, ¥= 9¢*. Points (0,0) and
(1,2) correspond to t=0 and £=1 respectively. Then '

1 1
fF-.dr = f A2y dr — (27 du®y = f (68 —16:5 dr = -1
¢ 2o 50 6

Second Method. Substitute y= 2x7 directly, where x goes from 0to 1. Then
1 1
f F-dr = f w2y dx — (7P dnFy = f (6x° —162°)dx = —
o =0 x%=0

o |=3

Note that if the curve were traversed in the opposite sense, i.e. from (1,2) to (0,0), the value of the integral
would have been 7/6 instead of — 7/8.
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. 9. Find the work done in moving a particle once atound a cirele € in the xy plane, if the cirele has
center at the origin and radius 3 and if the force field is given by

Fos (Z—y+ai + (x+y—22] + (3x—2 +40)k

In the plane =0, F = (2x—%)}1 +(x +¥)j + (3 —2¥)k and dr =dxi +dv}j so that the work done is

f F-dr = f [(2x =321 + (x 4935 + Bx—23k] - [dxi + dy i)
o ¢

f (2x—yYdx + (x+¥)dy
¢

Choose the parametric equations of the circle as x= 3cos t, y=3sin¢
Where ¢ varies from 0 to 27 {(zee adjoining figure). Then the line integral
equals

on .

[23cose) ~3sinz] [—3sine]dr + [3cost +3sin t) [3coss] ds ¢
=0 : ¢

29 9 b . 2]
= f (9 — 9sintcos)dr = 9 — 2 gin?: [ = 187
o] 2 0

In traversing £ we have chosen the counterclockwise direction indicated
in the adjoining figure, We call this the positive direction, or say that €
has been traversed in the positive sense. If € were traversed in the clock- r=xi+yj

wise (negative) direction the value of the infegral would he — 137, ’ =3 cosci+3esinej

10. {o) It F=V$, where ¢ is single-valued and has continuons partial derivatives, show that the
work done in moving a particle from one point Py = (x,, ¥4, z4) in this field to another point
Pp = (%4, y0, 2,) is independent of the path joining the two points.

(b) Conversely, if F-dr is independent of the path € joining any two points, show that there
C
exists a function ¢ such that F=V¢

Fy Ry
(e} Work done = f F-dr = Vb -dr

.Pj_ Pj_
B 3 :

= 2(_‘c£514"()‘ibi+a—(pl!'-)'(dﬂti+a'yj+dz|i)
3

= = E)af +%d + B_qbd

e =T TR Y T

i) . i ) .
L P = QP — PPy = Gxa, e, 22) — Plrg,ys,z1)
1

Then the integral depends only on peoints Py and Pz and not on the path joining them. This is true
of course only if rl')(x,y,z) is single-valued at all points Py and P,

(&Y Let F = Fii + Fj + F;k. By hypothesis, f F-dr is independent of the path C joining any two
points, which we take as (*2,%1, 21} and (x,¥,z) respectively. Then

. (x,¥.2) (x,y,2)
$ix,y,zy = F-dr = Fidx + Fody + Fudz
(%1, ¥1,24) (%1, ¥4, 23)

is independent of the path joining (x4, ¥4, 1) and (x.¥,2). Thus
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(x+tAx,y,z) (xvyez)
f F-dr — F-dr
(%1, ¥1., 21)

(%1:¥1, 21)
(xl-)’:L: Zi) (x*'ﬂx’y»z)
f F-dr + f F-dr
(x ,J’,Z) (xi’ ¥1s 21)

(x+hx, ¥, 2) {(x+hx,v,2)
f F-dr = Fidx + Fpdy + Fadz
(x,9,2) (x,y.2}

1]

Ba+lx, vy, 2) — Pla,y,2)

I

I

Since the last integral must be independent of the path joining (x,¥,z) and (x+\x,y, 2}, wemay choose

the path to be a siraight line joining these points so that dy and 4z are zero, Then

v, T} -——__qu[x,y,z) _ 1 (95+Ax,-y,z)

E}b(x—!—ﬁx, 1 1
D IAYY

F1 dx
(x,y,2)

Taking the limit of both sides as Nx =0, we have g—f =F.

- . 9P :
Similarly, we can show that =— = F, and =— = F5.,
3 3z

og &
Then F = Fi+RKj+ Kk = g—fi +-%j—)j +£k = Vd,)_

Py
If f F-dr is independent of the path C joining Py and Po, then F is called a conservative field,
=

-1 .
follows that If F= qu then F is conservative, and conversely.
Proof using vectors. If the line integral is independent of the path, then
. (®y.2) CRE N
@(K,J’,z) = F-dr = F.d_ ds
' (%4, ¥1. 21) (%1, ¥1,21) §

dr
ds

L s d _  dr P _ o,
Ey differentiation, s = F-a-;- . But T Vrpa

$0 that (qu—-F)-jr = 0.
iy

Sinece this must hold irrespective of Si , Wwe have F= Vq';.

11. (@) If ¥ is a conservative field, prove that cutlF =Vx F =0 (i.e. F is irrotationaly.
(b3 Conversely, if VxF=0 (i.e. F is irrotational), prove that F is conservative.

(a} If F is a conservative field, then by Problem 10, F= Vr,i) .

Thus curlF = Vx qu = 0 (see Problem 27(a), Chapter 4).

i h| k
Vxp = 3 2 9.
() If V=xF=40, then I By 3, 0 and thus
12 E Fg
°R 3% PR 3R W _ 2
ay T gz 9z  ox ° 9 ay

We must prove that F =V¢5 follows as a consequence of this.

The work done in moving a particle from (xi1,¥s, 21) t0 (x,r,2) in the force field F is

it
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f Eixy.z)de + Foley2ydy  + Fotxy,z) ds:
[

where € is a path joining (%:,¥1,51) and (x,¥,2}. Let us choose as a particular path the straight line

segments from (x4, ¥y, z4) to (x, ¥4, 21) to (*,y.21) 30 {x.v,2) and call @ (x,y,z) the work done along this
particular path. Then

x ¥
Pixy,z) = f Filx,yy,z0dx + f
X1 ¥

i

z
Folz,y,z0)dy + f Folx,y,2) dz
Z1

It follows that

B
-a—; = Fg(x,y,z)
A fz dF,
= = F 1 ¥ + - XY, }(fz
Iy (%, ¥, 241) .. By {(x¥,z
z "1
= Fgfx,}’,Zj) +f F(iﬁg(x,}f,z)dz
2, 0%
z
= By + Beya| = Baga + By — B s ke
1

o
B

b ¥
= = F {x,¥1,21} + f
¥,

<1

OF, z AR
a—; (x,¥,z1y dy + f a—: (x,y,2) dz
9

¥ 9F. Z oF,
= Fl(xiyirzl) + f = 1(x,}’-31)d7 + f ’a 1(%3’,2)032
¥, Oy z 1z

1

¥
= R(e,ynz) + Ry, z)

Fi
+ Fi(x,y,r) |z

-1 1
= Fi(x?ylizlj + Fl(x'ylzi) - Fi(x:}’irzl) + Fi(x,%z) - F‘I(xlylzi) = F;I.(x:}'rz}
B s o
Then F = FRi+Fj+ KRk = £i+£j+£k = V.
o Oy Jz

Thus a necessary and sufficient condition that a field F be conservative is that curl ¥ = VxF= a.

12. (a) Show that F = (2xy +273i + 27§ + 3x2%k is a conservative force field, (5) Find the sca-
Iar potential. (c¢) Find the work done in meoving an object in this field from (1,—2,1) to (3,1,4).

(¢) From Problem 11, & necessary and sufficient condition that a force will be conservative is that
curl F = VxF = §.

i J k

v = 2 2 2 .,
Now VxF 3% 9 3
2oy + 25 %% 3ml?

Thus F i{s a conservative force field.
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(by First Method.

i . 3 3 fols '
By Problem 10, F = V¢ or % i'Iljj + 2Pk = (2y+:%yi + 42§ + 3xz” k. Then
‘Ox Oy Bz
- dp _ 3 ; 2 op 2
(1 Ta; = 2wy +z {2 ay = X {3 B2 = dxz
Tntegrating, we find from {1}, (2} and (3) respectively,
d) = 2%y + xzt 4 Fiv.2)
gb = ny +  gix,z)
b = xz® + Alx,¥)

These agree if we choose f(y,2) =0, g{x,z) = %z
be added any constant.

Second Method.

8 hxgy)=+y sothat ¢ ="y +xz° to which may

since F is conservative, f F-dr is independent of the path € joining (xy,¥1,21) and (x.,¥.2).

4
Using the method of Problem 11(8),

z
Zdy + f 3xz° dz
z

X ¥
' H
cp(x,y’z) = f (23‘3'1“' Zi) dx + I
x4 y1 1
x b z
2 2 3
= - + X? +
(x"y txz) 1,51 ¥ |y1 %z .zi
2 H 2 <] 2 2 3 ]
= + = - + - + -
%Y %7y Xy, x, 2 Yy . 2y, xz %z,
- Wy o+ o o A%y - xlzf = x%y + xz° + constant

Third Method. F-dr = V{,‘b-dr = ?—qbdx + B—E'bdy + @?dz = dgb
dx Ay Oz
Then dp = Fedr = (2vy +2°)dx + 2% dy + 3x37 dz
= (2ay dx +x° dy) 4+ (2% dx + 3xz” d2)
= d’(xgy) + df(xzs) = d_(ny +x20)
and ¢ = x%y + xz° + constant.

&)
(e} Work done =
P

1

FT dr

(2xy +2%)dx + «2 dy + Buz” dz

P2 o a = a PQ P a (511’4)
= dix“y +xz" ) = x7y + xz = x"y +xz‘1 = 202
B Pfl. (1¢_Ql1)
Another Method,
From part (b}, gb(x,y,Z) = ny + xz° + constant,
Then work done = ©(3,1,4) — &(1,-2,1) = 202.
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Ty
Prove thaf if Fedr is independent of the path joining any two points P, and P, in a given
B

region, then f F.dr = 0 for all closed paths in the region and conversely,

Let P AP,BP, (see adjacent figure) be a closed curve. Then

A
JCF-dr = f ¥-dr = f Fedr + f Fedr “
P, 4B,8R, AR, BB
= fF-dr - fF‘-dr = 0
PR, BB2,

since the integral from P to P, along a path through A is the same as
that along a path through B, by hypothesis.

Conversely if §F-dr = 0, then

Fedr = fF‘-n.’r + f Fedr = f F+dr — fF-d,’r = 0

By AB.BRy P 4B, E.BRh P AF; P BF,
so that, j Fedr = f F-dr.
AR B BE

(@) Show that a necessary and sufficient condition that F, dx + Fs dy + F; dz be an exact differ-
ential is that VxF = @ where F = Fi + i+ Fk.

() Show that (y°z° cosx — 4x"z) dx + 2%y sinx dy + (3y?z® sinw — x*) dz is an exact dif-
ferential of a function ¢ and find ¢ . '

w2 %

(a) Buppose Fidx + Fdy + Fydz = = dx + a—@dv + ==dz, an exact differential. Then
Ox ay 4 Oz

since x,y and =z are independent variahies,

. X _ 9 . o
B o= ox " B = ay' by = oz
and g0 F=F11+FQJ+F3k-—-%E—)i+—§—E§j+%—?k=?q5. Thus VxF=VxVp =g,

Conversely if VxF =0 then by Problem 11, F= V¢ and so F-dr = Vd.dr = dp, ie.
Fidx + Fody + Fydz = deb, an exact differential.

®) F = 0%2° cosx — 4x"2}i + 2:% sinxj + (3y°2° sinx ~ #*)k and VXF is computed to be Zero,
80 that by part fa) :

72" cosx — a2y dx + 2:% sinx dy  + (3y°2% sinx —x*ydz = dp

By any of the methods of Problem 12 we find & = y22° sinx — 2%z + constant,

Let F be a conservative force field such that F = —V&. Suppose a particle of constant mass m
to move in this field. If 4 and B are any two points in space, prove that

PUY + Imef = G(B) + gm?

where Y, and v, are the magnitudes of the velocities of the particle at 4 and B respectively.
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2 v
s Ot dro_ pde dr _ om o d drgd
F=ma=m 5. Then F-— = m - 2 5 dr (dt) .
Integratin g Fodr = 242 lB = 1?2 — Lme?
grating, ’ 2 by 3™ T 2™
B B B .
I F=-Vp, F-dt = — Vi-dr = — dp = P — PB).
4 A A
Then ¢y — PBY = -limv; - %mv: and the result follows,

¢h(A) 1s called the potential encrgy at A and %m:.f is the kinezic energy at A. The result states that
the total energy at A equals the total energy at B {conservation of energy). Note the use of the minus sign

in F = V.

16. It & = 2xyz®, F= ayl — zi + 2"k and C is the curve x=t%, y=2t, z=:> from t=0 to ¢=1,

evaluate the line integrals (a) f ¢ dr, (&) f F x dr,
a 4

@ AlongC, & = 2w:® = 20H@06"f = 4°,
r = xi+yj+zk = 2i+2j+ik, and

dr = (20 + 2j + 3 Kyde. TThen

i
pdr = f 4220t + 23 + 3° W) de
¢ =0

1 1 1
1f gl dr + jf a®de + kf 1224 de = —31~1+
o O [#] 1

(3) Along €, F=zxyi—zj+z2’k=2"1— £+

AN

el
[
4
o

Then Fxdr = (2001 — 5+ 7K x (28 +2 + 37 k) dt
i i k
- e @ A dae = [=sf-2hHi+ e —82yj + @ k] de
2 2 3
1 1 1
and fodr = if (—P—2tyde + jf (—4t5)de  + k_f (A +2ey de
i O O Q
- 9 . 2 I
= —qpf — 3i * 5k

SURFACE INTEGRALS.

17. Give a definition of ff An dS over a surface S in terms of limit of a sum.
N

., M. Choose any point P, within

gubdivide the area S inte M elements of area AS,p where p=1,2,3,..
be the positive unit normal to

./_\Sp whose cocordinates are (”pv%,’)»ng)' Define A(Q;P,yp, sz) = Ag,. Let ny,

stb at P. Form the sum
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N
2 Ap-ng As,
p=r

where Aﬁ,-np is the normal component
of Ap ot P?g.

Now take the limit of this sum as
M-~ in such a way that the largest di-
mension of each &5?5 apptoaches zero.
This limit, If it exists, is ecalled the
surface integral of the normal compo-'
nent of A over 5 and is dencted by

[ aenas

3

Suppose that the surface S has projection R on the %y plane (see figure of Prob.17). Show that
AndS = a-n 2
k|
s J4

By Problem 17, the surface integral is the limit of the sum
M
() 2 Ap‘“pASp
f=1

The projection of &Sp on the xy plane is f(nﬁ, &Sb)-ki or [nﬁ' k| &SP which is equal to L\a&b By,

sothat AS = " P Thus the sum (I} becomes
P | nf)-k ’

X Ay o

) 2 Aib.n.ﬁ‘]-nb-ki
p=1 '

By the fundamental theorem of integral calculus the limit of this sum as M- in such a manner that

the largest Axf? and Ay?b approach Zero is
 dx dy
A-n a- k[
g

Dy Ay,
Strictly speaking, the result AS:b = f_ﬁ-p—kT is only approximately true but it can he shown on closer
5
examination that they differ from each other by infinitesimals of crder higher than &"ﬁ; ,&yﬁ » and using this
the Limits of (I3 and (2) can in fact be shown aqual.

and so the required result follows.

Evaluate ff A-ndS, where A = 18zi — 127 + 3vk and § is that part of the plane
b

2x +3y +6z = 12 which is located in the first octant.

The surface § and its projection R on the =y plane are shown in the figure below.



96

20.

VECTOR INTEGRATION

From Problem 17,

To obtain n note that a vector perpendicular to the surface 2x +3y +6z = 12 is given by V(2x+3y+6z) =
2i +3j + 6k (see Problem 5 of Chapter 4), Thena unit normal to any peint of 5 (see figure zbove) is

2i + 3§+
n = 1_3.‘]—6_k = %l + %1 +%k
v'22+37+6"
Thus mk = (zi+-3—‘+§k)-k - 8 and 50 di@z =ded'
= i L 7 In-k| ® Y
. . 2..3.,. 6 362z — 36 + 15v 36 - 12x
Also A-m = (1821-—12]+3yln'(¢.1+73+7k) = ——— e = e
i i 7
12 — 2x — 3y

nsing the fact that z = -~ " from the equation of 5. Then

6
) - dxdy 36 —12x. T o
ffﬁnds = ff An k| = ff(—,-?—)-G de dy = (6 — 2x) dx dy
R R

b &

To evaluate this double integral over R, keep x fized and integrate with respect to y from y=0 (F in

the figute above) to ¥ = 12—;—& {0 in the figure above); then integrate with respect to x from x=0 to
x=6. In this manner R is completely covered. The integral bhecomes
b (12-2x)/3 & 4x?
6 —2x)ydy dx = (24 — 12% +‘3—)dx = 24
£=0 ¥=0 =0

If we had chosen the positive unit normal n opposite to that in the figure above, we would have obtained
the result —24.

Evaluate ff A-ndS, where A = zi +xj — 3y’ zk and S is the surface of the cylinder
b

x2+y2=16 included in the first octant between z =0 and z=5.

Project 5 on the xz plane as in the figure beiow and call the ptojection R, Note that the projection of
§ on the xv plane cannot be used here. Then
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Anormal to x +¥” = 16 is V(x2+y2) = 2xi+2yj.
Thus the unit normal to § as shown in the adjoining

figure, is
x1+tyj
4

+
oo L
) +

since xz+y? =16 on 5.

e
(zi+xj——3yozk)- (u} = é(xz + xy)

A-m
n-j = xl‘:y]_j - %
Then the surface integral equals
5 B
ffL;xldxdz = f f (_--_ + %) dy dz = f (1z+8)dz = 90
2=0 x=0 V16" z=0

F

21, Evaluate f PndS where ¢ = %xyz and S is the surface of Problem 26

g
ff dnds = ff &n dx dz
1

We have
3
. xityi L _ ¥ . R .
Using n = —3 s wmi=g asin Problem 20, this last integral becomes
5 4
3 . . _ 3 2. Z .
Exz(xI tyi) de dz = r {(xTei+txzv16—x" i) dx dz
B z=0 x%=0
3 ’ 64
= ¥ i+8 dz = 100F + 100j
a f (5 . 5 $2i)dz 00t i

#=0

evaluate ff (VxFyen dS where § is the surface of the sphere

3
z T

22. If F = yi +(x— 2xz)j —xvk,

% +y2+2% = o® above the xy plane,

i i k
Vxr - % 2 Bﬁ = xityj—ozk
i o z

¥ X=2xz —xy

Anormal to x% +4%2 +2% = ¥ is

Va2+y +22) = owi+ 2§ + 22k



98 VECTOR INTEGRATION

Then the unit normal n of the figure above is given by

n - i+ 2y F+2zk xi+yj+zl§

Vian? + 47 +422 a

s 2,.2,.2 2
singe x” ¥y o= 4.,

The projection of § on the xy plane is the region R bounded by the cirele x?+y2= o?, 2=0 (see fie-

ure above). Then
ff(vXF)-n dx dy
|-kt
£

ff(VXF‘)-n d8
3
ff(xi+y] ~ 22k). (x1+y1”k) d:ﬁ
i

E
a va?—x* oa?
; f J‘ sty 2,
VaZ ke y?
X==il = el

y== [ 3

using the fact that z = Va2—22—y2. To evaluate the double integral, transform to polar coordinates (G, )
where x = p cos @, ¥ = o sin and dydx is replaced by O dp d¢b. The double integral becomes

kil
f f * pap ac f f L SLL P FPPS
V' —,02 1ra2

¢=0 p=0 $=0 p=0

e
= f f(—Bp a_‘2+———)dpaf
\/a—-p

fxss o/ _
= f @@= —a/av‘*p_oldqb

$=0

27

»=0

I
fo=]

23, If F=4xzi—y2j + yzk, evaluate ff F-n d5

where § is the surface of the cube bounded by x=0,
x=1, y=0, y=1, z=0, z=1.

Fface DERG: n=i, x=1, Then

101
ﬂF-ndS ff (4zi—9y2j+yzk)-idydz
O Yo

DEFG

I
okﬁ
=
Py
o
n
T
&
a,
M
Il
By
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Fece ABCO: n=—1,x=0, Then

1 1
ffF‘-ndS = ff (=¥ i+yzk)- (—D)dydz = 0
o Yo

ARCD

Face ABEF: n=j,v=1. Then

11 11
ffF-ndS = ff (dxzi—j+zk). Jdxde = ff —dxdz = —1
o Yo s de]

ABEF

Face OGDHC: n=—j, ¥=0. Then

11
ffF-ndS = ff (dxz iy« f—Ndxdz = 0
(o]

oGog

Face BCDBE: n=k, z=1. Then

11 1
A[‘[‘F"ncﬁS = ff (4xi-—-y2j+yl{)-kdxdy = ff y dxdy = %
[0 ¢ 0 Yo

BODE

Face AFGO: n=—k, £=0. Then

1 1
ffp.nds _ ff ¥ DK dxdy = 0
8] 8
AFGG
_Addirg, ﬂp-nds = 2 +0+ (=) + 0+ % +0 = %

S

In dealing with surface integrals we have restricted ourselves to surfaces which are two-sided.
Give an example of a surface which is not two-sided,

Take a strip of paper such as 48CD as shown in
the adjeining figure. Twist the strip so that points 4 and
B fall on 7? and C respectively, as in the adjoining fig-
ure, If o 18 the positive normal at point P of the surface,
we find that as n moves around the surface It reverses
its original direction when it reaches P again. If we
tried to color only one side of the surface we wonld find
the whole thing colored. This surface, called a Moehius
strip, is an example of a one-sided surface. This is
sometimes called a non-orientable surface. A two-sided
surface is oricniable,

R . i g ® i 5 E2 &
Ig»w.i‘ﬁ“w@,‘fWWa%i"g;ﬁwwﬁ@&dﬁﬁﬁ«m&?ﬁg*wéggm
ki L 2

VOLUME INTEGRALS

25. Let ¢o = 4552y and let ¥ denote the closed region bounded by the planes 4x+2y+z =8, x=0,

¥y=0, z=0. {a) Express fffcp dV as the limit of a sum. (b) Evaluate the integral in (a).
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Subdivide region ¥ into M cubes having volume
AR, = Aoy By, Dz, k=1,2,..., ¥ as indicated
in the adjoining figure and let (%1 7k’zk) he a
ploint within thiz cube. Define (D(xk,yk,zk) =
Dy Consider the sum

¥
3 Pp, 8%
k=1

taken over all possible cubes in the region,

#
gt ®

The limit of this sum, when M- in such a il b 2rren il ¥

manner that the largest of the quantities AY
will approach zero, if it exists, is denoted by

ff @ dV. 1t can be shown that this limit
¥

is independent of the method of subdivision if
¢ is continuous throughout V.

In forming the sum (1) over all possible cubes in the region, it is advisable to proceed in an order-
1y fashion. One possibility is to add first all terms in (I} commesponding to volume elements contained
in a eclumn such as P¢ in the above figure. This amounts to keeping x, and y, fixed and adding over
all z,’s, Nexi, keep x, fixed but sum over all yk’s. This amounts te adding all columns such as PQ
contained in a slap RS, and consequently amounts to summing over all cubes contained in such a slab.
Finally, vary xp. Thig amounts to addition of all slabs such as RS.

In the process outlined the summation is taken Iirst over z;'s then over yk's and finally over x;'s.
However, the summation can clearly be taken in any other order.

The ideas involved in the method of summation outlined in (2) can be used in evalnating the integral.
Keeping x and ¥ constant, integrate from z=0 (base of column POy to z = 8—4x—2y (top of column
P}, Next keep x constant and integrate with respect to y. This amounts toaddition of columns having
beses in the xy plane (z = 0) located anywhere from K (whete ¥=0) to S {where 4x+2y=8 or y=4—2x),
and the integration is from y =0 to « =4 - 2x. Finally, we add all slabs parallel fo the yz plane, which
amounts to integration from x=0 fo x= 2. The integration can be wrilten

2 Ab=9x 8-l 2y 2 al-2x
f f f 45x° y dz dy dx 45 f f 2y (8 —dx— 2y) dydx
z=0

x=0 y=0 x=0 y¥=0

1l

H

2
45 f %x?(ﬁl-—?x)a dx = 1928

x=0

Note: Physically the result can be interpreted as the mass of the region ¥ in which the density ¢
varies according to the formula b = 45<°y .

26. Let F = 2xzi —xj + yok. Evaluate fff F dV where IV is the region bounded by the sur-

F

faces x=0, y=0, y=6, z=x", z=4.

The region ¥ is covered (e) by keeping x and ¥ fixed and integrating from z=x" to z=4 (base to top of

column P @), (b) then by keeping x fixed and integrating from y=0 to ¥=6 (R to § in the slab), (¢} finally
integrating from x=0 to x=2 (where z =x? meets z=4). Then the required integral Is
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{(2xzi —xj +y2k) dzdydx

-
=g
=

2prbpn
f 2z dadyds - xdzdvdx + k v dzdydx
? 0 Vo Yi? ' 2

o
o
=

= 12Bi — 243 + 384k

27. Find the volume of the region cormon to the intersecting eylinders 2*+v% =a® and 22+5% =q? |

g

A
%
- o
k33 R
=
£l £
g, e
z@e\g ot i s
- -
30 - B
B by
B e - £ ¥
hotd hd £ -
w5 ok

Yo b dep
B e e
«q-s\.«x.@«vm»ov»&”‘»»«x

Required volume = & times volume of region shown in above figure

a a2 =x% aZm g2
f f dz dy dx

x=0 y=0 720

It
o3
&
Ry
B
]
B
‘:\
)
&)
I
BN
8
.
2
Q.
®
"
s
—~
[
[[s]
I
®
s}
e
a
®
1]
ti
m|‘§?
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28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

VECTOR INTEGRATION

SUPPLEMENTARY PROBLEMS

: !
It Rity = (32—0)Yi + (268} — d4tk, find (&) fR(t)dt and (5) f R(ty dt.
2

Ans. (@) (B—1FDi + (A3 — m2k + e (b) 5O0OL— 32j — 24k
/2
Evaluate f (3 sinzi + 2 cosui) du Ans., 31+ 2j
0

' 2 2
I A(e) = ti—tZj+ ¢—1k and B = 221 + 62k, evaluale {(2) f A-Bde, (M) f AxXB de.
0- 0

Ans. (@) 12 (b) —2¢i — 4_3?] + 55_4k

2 ¢
Let A=£i—3j+2tk,B=i—2j+2k.(3=3i+£j—k. Evaluate (a)f A-BxC dt, (b)f AX(BxC} dr.
1 .

1
Ans. ()0 (&) —-%i - 51_3&.]. + 1—51(

2

-t .
The acceleration a of a particle at any time ¢ 2 0 is given by a=¢ "i—6(t+1)j+ 9 sint k. If the veloc-
ity v and displacement r are Zeto at ¢=0, find v and r al any time.

Ans. v =(1— e‘t)i — (37+65)) + (3 -3 costik, T = (a—1+e"t)i - (:5+3t2‘)j + (3t=3 sint)k

The acceleration a of an object ab any time ¢ is given by a = —gj, where g is & constant. At =0 the ve-
locity is givenby v = vpcosfoi + mpsin 6~ 4 and the displacement r=0. Find v and r at any time &> 0.
This describes the motion of a projectile fired from a cannon inclined at angle Hn with the positive x-8x1s
with initial velocity of magnitude vg.

Ans. v=upcosBol + (vosinbo—gn)i. t= (s GOS Tyt 1 + [(vg sin Bt — 1gi? i

3
Evaluate f A-%ds if A(2) = 2i—j+2k and A3y = 4i— 2§ +3k. Ars. 10
z

Find the areal velocity of a particle which moves glong the path r = @ coswe i + b sinwi j where a,b,cw
ate constants and ¢ is time. Ans. yebok

Prove that the squares of the periods of planets in their motion around the sun are proportional to the cubes
of the major axes of their elliptical paths (Kepler's third law).

A= (2y+3)i +xzf t yz—x)k, evaluate f A-dr along the following paths [
[y

(@) x =22, y=t, z=1° from £=0 to ¢=1, '

(b3 the straight lines from (0,0,0) to (0,0,1y, thento (0,1,1), and then to (2,1,1),

{¢) the straight line joining (0,0,0) and (2,1,1).

Ans. (a) 288/35 (bY10 () 8

i F = (5xy—6x2)i + {2y —4x)j, evaloate f F-dr along the curve C in the xy plane, y=x3 from the
point (1,1} to (2,8).  Anrs. 3B ¢

¥ F = (2x+¥)i + 3y —x13, evaluate f F-dr where C is the curve in the xy plane consisting of the
[4

straight lines from (0,0) to (2,00 and then to (3.2y. Ans, 11

Find the work done in moving & particle in the force field F = 3x71 + (xz—y)i + 2K along
(a) the straight line from (0,0,0) to (2,1,3).

(b)the space curve x =267, y =%, 2 =4f2—¢ from £=0 fot=1.

(¢} the curve defined by x*=4y, 3x%=8z from x=0 to x=2.

Ans. (0} 18 (b)14.2 (e} 16
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41. Evaluate f F-dr where F = (x—3y)1 + (y—2x)j and € is the closed curve in the xy plane, x=2¢cos¢,
c

42.

43.

44,

43.

46,

47

48,

49,

50.

51.

53.

¥ = 3sine from ¢=0 to ¢=27. Ans. 87, if C is traversed in the positive (counterclockwise) direction.

I T is a unit tangent vector to the curve €, r=r(z), show that the work done in moving a particle in a foree

field F along € is given by f F-T ds where s is the arc length.
C

I F =(2x +y9)l + {3v —4x)j, evaluate f F.dr around the triangle € of Fié:ure 1, (2} in the {ndicated
{

direction, (b) opposite to the indicated direction, Ans. (8)—14/3 (b) 14/2

¥ ¥
}’2 = (1'1)
sf?-
At
(2.1} eEied
’“X‘&st.
foseiniy oy = x7
il onmas
0 (2,0} x
0
Fig. 1 Fig. 2

Evaluate f A-dr around the closed curve C of Fig.2 above if A = (x—y}f +(» +¥3i. Anrs. 2/3
4

¥ A= (y—2)1 + (3x+2y)J, compute the circulation of A about a cirele © in the xy plane with center at
the origin and radius 2, if C is traversed in the positive direction. Anrs. 87

{(a}If A = (4xy—3x232)i + 202§ — 2%z K, prove that f A-dr is independent of the eurve C joining
[

two given points. (b} Show that there is a differentiable function ¢> such that A = Vq‘j and find it.
Ars, () qb = 2x9y — 2224 congztant

{a) Prove that F = (yQ cosx + zﬁ)i + (2y sinx — $H)j + (3sz+ 2}k is a conservative force field.
{b) Find the sealar potential for F.

{¢) Find the work done in moving an object in this field from (0,1,-1) to (7/2,—1, 2).

Ans. (B) @ = y?sinx + xz® — 4y + 22 + constant  (c) 15 +47

) 4
Prove that F = r?r is conservative and find the scalar potential. Ans. ¢ = I_ + constant

4
Determine whethet the force field ¥ = 2xzi + (xg—y)j + (22 —x")k is consetvative or non-conservative,
Ans. non-conservative '

Show that the work done on a particle in moving it from 4 to B equals its change {n kinetic energies at
these points whether the force field is conservative or mot.

Evaluate f A-dr along the curve x2442 =1, z=1 in the positive direction from (0,1,1} to (1,0,1) if
4 ) e —
A= (yz+2¢)i + xzj + (xy+220k,  Ams. 177

. {a)If E=rr, is there a function ¢ such that E = —VQ‘J? If so, find it. (&) Evaluate f. E-dr if C is any
1 .
a L
simple closed curve.  Ans. (o) ¢ = —‘:3— + constant () O
Show that (2x cosy +z siny)dx + (xz cosy — x®siny)dy + x siny dz is an exact differential. Hence
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solve ihe differential equation (2x cosy +z siny) dx + (xz cO8y — x*sinyydy +x siny dz = 0.
Ans. xZcosy + xz siny = constant

54. Solve (a@) (e_y+3x9y9)dx + (2x%y —xe'y) dy = 0,
) (2 —e Fsiny)de +(1+ e ¥ cosyydy + (x—8z)dz = 0.

Ans. (@) xe 7 +x°y? = constant (B} xz + e ¥ siny +y — 422 = constant

55, If & = 2y%z + 2"y, evaluate f & dr where C
4
(a) is the curve x=¢, y=1%, z=¢* from =0 to t=1
(b consists of the straight lines from (0,0,0) to (1,0,0), them to (1,1,0), and then to (1,1,1).
19, , 11y . 75 1.
Ans. (o) gpi + {53 * ik by 5 + 2k

56, If F = 2yi — zj + xk, evaluate f Fxdr along the curve x =cosi, ¥ =sing, z = 2 ¢cos¢t from ¢=0
4

tot=m/2.  Ans. (2—Di + (T = 5]

B9, A = (3x+y)1 — x.j +{y—22k and B = 2i —3j + k, evaluate f {AxB)yx dr around the circle in the
c
xy plane having center at the origin and radius 2 traversed in the positive direction. Ans. 4T (Ti+3D

58. Ewvaluate ff AndS for each of the following cases.

8
(@) A =yi + 2xj — zk and S is the surface of the plane 2x +y = 6 in the first octant cut off by the plane
z=4,
(b)Y A = (x+y3)yl — 2x§ + 2yzk and 5 is the surface of the plane 2v+y +2z = § in the first octant.
Ans. f2) 108 (5) 81

5. F F = 2vi — zj + x°k and § is the surface of the parabolic cylinder y?=8x in the first octant bounded

by the planes y =4 and z=6, evaluate ‘ff F-ndS. Anms. 132
5

66. Evaluate ﬂ A-n dS over the entire surface S of the region bounded by the eylinder x“+z%= 9, x =0,

)
“y=0, =0 and y=8, if A = 821 + {3x+y)] — xk. Adns. 187

61. Evaluate ﬂr-n d5 over: (a) the surface S of the unit cube bounded by the coordinate planes and the

3
planes x=1, y=1, z=%; (&) the surface of a sphere of radius a with cenfer at (0,0,0).
Ans. {(2)3 (b} 47703

62

Evaluate ﬂ A-ndS over the entite surface of the region above the xy plane bounded by the cone

3
22 = x%+4? and the plane z=4, if A = 4xzi + xyz°] + 3zK.  Ans. 3207

63. (a) Let R be the projection of a swface S on the xy plane. Prove that the surface area of S is given by

ff / + (%—if + (%—if dxdy if the equation for S is z = f(x,¥).
p
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by

65.

66.

67

68.

69.

0. I F =
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() What is the surface area if 5 has the equation Fx,y,2y=0? Ans. ﬂ‘ dxdy

Find the surface area of the plane x + 2y +2z =12 cut off by: (@) x=0,=0,x=1, ¥y=1; (b)Y x=0, ¥y =0,
and x”+y%=1§. Ans, (1) 3/2 (B) 67

Find the surface area of the region common to the intersecting eylinders x%+y2 = o® and #2+ 22 = o2,
4ns. 16a?

Evaluate (1) ff{VXF)-ndS and (&) ffa‘} ndd U F = (x+2) — 3zj + xk, & = dx+3y -2z,

and 5 is the surface of 2x+y +2z = 6 bounded by x=0, x=1, ¥y=0 and y=2.
dns. eyl (BYy 2i+j+2%k

Solve the preceding problem if § is the swface of 2x+y+ 2z = 6 bounded by x=0, ¥y=0, and z=0,
Ans. (@) 9/2 (&) 721 +36j + T2k

Evaluate ﬂ vx?+y2 dxdy over the region R in the »v plane bounded by x2 +y?=36.  A4ms. 1447
&

Evaluate ﬂ (2x+y) dV, where V is the closed region bounded by the cylinder z = 4—x2 and the

¥
planes x=0, y=0, ¥ =2 and z=0. Ans. 80/3

(2273231 — 2xy§ — 4xk, evaluate {a} fffV-F 2V and {by ff VdeV, where ¥ is
¥

the closed region bounded by the planes x=0, =0, z=0 and 2« +2r+z =4, Ans. (a) % €:)] g(j-—k)



Chapter 6

THE DIVERGENCE THEOREM OF GAUSS states that if V¥ is the volume bounded by & closed sur-
face § and A is a vector function of position with con-

tinuous derivatives, then h

fvf V-Ady - [f—nds - #A-ds

3

where n is the positive {(outward drawn) notmal to 5.

STOKES' THEOREM states that if S is an open, two-sided surface bounded by a closed, non-inter-
secling curve € (simple closed curve) then if A has contlnuous detivatives

fA-dr = ff(VxA)-n ds = ff(VxA)-dS
“‘:‘-“-_—_—.S__J)

¢ 3

whete C is traversed in the positive direction. The direction of € is called positive if an observer,
welking on the boundary of S in this direction, with his head pointing in the direction of the positive
normel to 8, has the surface on his left,

GREEN’S THEOREM IN THE PLANE. K R is a closed region of the xy plane bounded by a simple
closed curve ¢ and if M and N are continuous functions of x
and ¥ having continuous derivatives in R, then

fﬂdx+Ndy = ﬁ(?ﬁ._ -a—g)dxdy
e . Ox dy
R

whete  is travetsed in the positive {counterclockwise} direction. Unless otherwise stated we shall

always assume f to mean that the integral is deacribed in the posifive sense.

Green’s theotem in the piane is & special case of Stokes’ theorem (see Problem 4)., Also, it is
of interest to notice that Gauss’ divergence theorem is a generalization of Green’s theorem in the
plane where the (plane) region R and its closed boundary {(curve) € are replaced by a (space) region
V and its closed boundary (suzface) S, Fer this reason the divergence theorem is often called Green’s
theorem in space (see FProblem 4),

Green’s theorem in the plane also holds for regions bounded by a finite number of simple.
closed curves which do not intersect (see Problems 10 and 11).

106
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RELATED INTEGRAL THEOREMS.

1. ff/fébvzab + (chb');(Vsb)]dV = ff@w).ds
A 5

This is called Greern’s first identity or theorem.

[4

2. jff(qstw - YV dv = ff@vsb* WVe)- 48
¥ 5
This i8 called Green’s second identity or symmetrical theorem. See Problem 31,
3. '/:ffoA v = U(nxA) s = ﬂdsmx
F 3 g
Note that here the dot product of Gauss’ divergence theorem is replaced by the cross product,
See Problem 23,
4. fq')dr = f nxVe dS = [/.éSxV¢
g

i

5. Let  represent either a vector or scalar function according as the symbal o denotes a dot or
cross, or an ordinaty multiplication. Then

fffvow‘ﬂj = ff“"kf—’ds = ffdso¢.
v g g
fa’rokb = ff{nxV)oq'J(gS _ ff(dsxv)"tﬁ
§ s

c

Gauss’ divergence theorem, Stokes' thecrem and the results 3 and 4 are special cases of these,
Bee Problems 22, 23, and 34.

INTEGRAL OPERATOR FORM FOR V. Tt is of interest that, using the terminolegy of Probliem 18,
the operator V can be expressed symbelically in the form

Vo = lim L dso
° %fIP-o .&V# S
AS

where o denctes a dot, cross or an ordinary multiplication (see Problem 25). The result proves use-
ful in extending the concepts of gradient, divergence and curl to coordinate systems other than rec-
tangular (see Problems 19, 24 and also Chapter 7).
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SOLVED PROBLEMS

GREEN'S THEOREM IN THE PLANE

1. Prove Green's theorem in the plane if € is a closed
curve which has the property that any straight line .
parallel o the coordinate axes cuts € in at most two ik e 1
points. /

T,et the eguations of the curves AEBR and AFB (see
adjoining figure) be »=Yy(x) and y =Yux) respectively.
1f R is the region bounded by €, we have

b E(x) - b . b -
M f I B f [al) B
f '(\}y dxdy f a}_ dy |dx = M(x,y),y:yi(x) dx = Mix, Yoy — M=, Y1) | dx
K

N .

=0 ¥= F{x) r=q @
b o
= — f M,y de — f Mx Yo1dx = — fM dx
fe] [ 4
Then 2y _{de — ff%d:ﬁ dy
n ¥
R

Similarly let the equations of curves FAF and EBF be x=Xi(v) and x =Xs(y) respectively. Then

W i Tyl ; f
ffﬁ dxdy f f %—de dy = f NiXoy) — N(Xl-y)] dy
=1

R y=e Lr=tin

e f
= fN(Xi.y)dy +fN(Xg.y)dy = de:f
f e o
Then (2} f Ndy = ff% dx dy
. %
)

I

Adding (1) and (2, _{de +Ndy = f (—aﬂ - Eﬂ)dx'dy.
5 o Ox Oy
2. Verify Green’s theorem in the plane for ¥

(1,1}
\cf(xy +¥2y dx + x*dy where ( is the
C
closed curve of the region bounded by

y=x and y=x2.

y=x and y =%~ intersect at (0,0) and (1,1).
The positive direction in traversing € is as
shown in the adjacent diagram.
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Along v = x2, the line integral equals

1 i
f ((x)(xg) +x4) dx  + (x9(2x)dx = f (3P +a*ydx =
o o]
Then the required line integral = 12 1 =

Along ¥ =x from (1,1) to 0,0 the line infegral equals
0
f Sxfdx = =1
]
20

Q
f ((x)(x)-i—x?) de + x2dx
i
ff{ )dxdy = ff[é%(xz) - aﬁy'(xy+y2)]dxdy
7 | x
f (x—2yYdedy = f f(x-—-2y)dydx
£

x=0 y=x?

| x 1 x
f [f (x-—zy}dy] dx = f (x;r-—-y?)! de
0 %R *

J¢]
1
- 1
f (x¢— 2P dx = -3

Q

MP—A
=l e )

1 1
2

so that the theorem is verified,

3. Extend the proof of Green’s theorem in the plane ¥
given in Problem 1 to the curves € for which lines
parallel to the coordinate axes may cut € in more
than {wo poinis, -

Consider a closed curve C such as shown in the ad-
Jjoining figure, in which lines parallel to the axes may
meet ¢ in more than two points. By constructing line ST
the region is divided into two regions R, and R, which are
of the type considered in Problein 1 and for which Green’s

theorem applies, i.e.,
() fMdHNdy ff( ’W)dxd

STre .

ff( aM)dxd

Adding the left hand sides of (7)and (2), we have, omitting the integrand Mdx + Ndy in each case,

TR R R R I R R |

SIS SYES ST Tas S¥F Ty rys gre THSTFE

using the fact that f= - f
8F rs

Adding the right hand sides of (1} and (2), omitting the integrand,

2y f Mdx + Ndy
Ivrs
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g

B Ry 2

where R consists of reglons Ry and R,

Then f Mdx + Ndy = ff( )dx dy and the theorem is proved.
J’
FOSFY
A Ieg'ion £ such as considered here and in Problem 1, for which any closed curve lying in R can be
continuously shrunk to a point without leaving R, is called a simply-connected region. A tegion which is
not simply-connected is called multiply-connected. We have shown here that Green’s theorem in the plane

applies to simply-connected regions hounded by closed curves. In Problem 10 the theorem is extended te
multiply-connected regions.

For more complicated simply-connecied regions it may be necessary to constiuct more lines, such as
ST, to establish the theorem.

Express Green’s theorem in the plane in vector notation,

We have Mdx + Ndy = (Mi+Nj)-(dxi+dyj} = A«dr, where A = Mi+Nj and rt=xi+yj so
that dr = dxi+dyj.

Also, if A = Mi+Nj then

i j k
v . 12 3 3| . _oN, , oM ON _ oM
A % o @ I SC et
M N 0
sothat(VxA)'k-'%g—%M.

Then Green’s theotem in the plane can be written

§A-dr = f(VxA)'de
R

4
where 2R = dxdy.

A generalization of this to surfaces § in space having a curve C as boundary leads quite naturally to
Stokes’ theorem which is proved in Problem 31,

Another Method.
As above, Mdx + Ndy = A«dr = A-glds = A-Tds, Y
5

where g—z = T = unit tangent vector to C (see adjacent fig-
ure). If n iz the outward drawn unit normal to €, then T = kxnp

s0 that

Mdx + Ndy = ATds = A-(kxn)ds = (AxK)-nds

Since A =Mi+Nj, B = Axk = (Mi+Niyxk = NI—Mj and

B‘N BM = V. B. Then Green’s theorem in the plane becomes

% 3y
§B-nds = f V.8 4R %
i ) o

where dR = dxdy.
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Generalization of this to the case where the differential arc length ds of a closed eurve C is replaced by
the differeniial of surface area 45 of a closed surface 5, and the corresponding plane region R enclosed by
C is teplaced by the volume ¥ enclosed by 5, leads to Gauss® divergence theorem or Green’s theorem in

space,
ff B-nd§ = J‘f V-84V
¥

8

5. Interpret physically the first result of Problem 4.
If A denotes the force field acting on a particle, then f A+dr is the work done in moving the particle
c

around a closed path € and is determined by the value of ¥xA. Tt follows in particular that if VxA=@¢ or
equivalently if A=V, then the integral around a closed path is zero. This amounts to saying that the work
done in moving the partiele from one point in the plane to another is independent of the path in the plane
Joining the points or that the force field is conservative. These results have already been demonstrated for
force fields and curves in space (see Chapter 5.

Conversely, if the integral is independent of the path joining any two poinis of a reglon, i.e. if the
integral around any closed path is zero, then VxA=0. Inthe plane, the condition VxA=l] iz equivalent to
oy _ oN

the condition == = = where A = Mi + Nj.
Sy B

(2,1)
6. Evaluate f (102* —2xy%) dx — 3x%? dy along the path x* —Bxy® = 4,2,
(0,0)

A direct evaluation is difficult., However, noting that ¥ = 10x* —2x52, N = —3x72 and S—M = —Gxy®

g—’: . it follows that the integral is independent of the path. Then we can use any path, for example the

path consisting of straight line segments from (0,0) to (2,0) and then from (2,0 to {2,1).

2
Along the straight line path from (0,03 to (2,0), ¥=0, dy =0 and the integral equals 10x*dx = 64,
x=0
1
Along the straight line path from (2,0} to ¢2,1), x= 2, dx =0 and the integral equals - 12;)(2 dy = —4,
¥=0
Then the required value of the line integral = 4 —4 = 0.
Anather Method,
oM _ N “ 3y 7 2 ; ; ; 5 3
Since g =5 (10x% —2¢y™y dx — 3x%= dy 1is an exact differential (of 2« —x%% . Then
A
(2, 1) . (21 (2, 1)
f (10x% ~2xyNy dx — 3x%%2dy = f d (2% —32y%) = 9x5 _ x2)° | = @0
©,9 ©,0) ©,0)

7. Show that the area bounded by a simple closed curve C is given by 2 {x dy — yda,

In Green’s thecrem, put # = —y, ¥ = x. Then

fcxdy-ydx - ff(-[%(x)—éay-(—y))dxdy - 2ffdxdy Y

7 I
where 4 is the required area, Thus 4 = éf‘ xdy — ydx.
4
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8. Find the area of the ellipse x = ¢ cos&, ¥y = b sind.

]

2m
Ares %f xdy —ydx = %f (a cos (b cos &) d8 ~ (b sinf)(—a sin &y a8
o 0

2r 2n
%f ab(cos26 + sin?fydb = é—f abdf = Tab
0 0

9. Evaluate f(y—sinx)dx + cosx dy, where € 1s the ¥
4

triangle of the adjoining figure:
(o) directly,
(b) by using Green's theorem in the plane.

m2.1)

(a) Along O4, y=0, dy=0 and the integral equals

o 72 v"w:.:_
j; (0 — sinx)dx + (eosx)(0) = jo' — sinx dx o v (1/2,0) *
w2
= cosx|0 = —1
along AB, x = %T, dx=0 and the integral equals
1
f (y—1)0 + 0dy = 0
0
2% 2 .
Along RO, v = e dy = ':Tde and the integral equals
 n 2 x2 2 . l" w2
(?—smx)dx + o COSX dx = (? feosx o sinx) o 1 - T o
- - mo_ 2 . _ 7 2. g
Then the integral along € = —1 + 0 + 1 — T~ o7 =
; ; - O o oM
{6y M = y — sinx, N = cosx, T " sinzx, ay =1 and
N oM ff
Mdx + Ndv = == — =—)d = —sinx — 1) dyd
i; Mdx + Ndy f (ax By) x &y (—sinx — 1) dydx
R £
w2 ox S ] e .‘Qx/ﬂ
= (—sinx — 1} dy |dx = (—y sinx —y} |, dx
%=0 ¥=0 £ =0
w2 72
_ 2% 2% . 2 . xZ | _ 2 _ =
= jr; (— % sinz — ?)dx = ——(—xcosx +sinx) — =i, = g n

in agreement with part (=},

Note that although there exist lines parallel to the coordinate axes (coincident with the coordi-
nate axes in this case’ which meet € in an infinite number of points, Green’s theorem in the plane still
holds. In general the theorem is valid when C is composed of a finite number of straight line segments.

10. Show that Green’s theorem in the plane is alse valid for a multiply-connected region R such as
shown in the figure below,

The shaded region R, shown In the figure pelow, is multipiy-connected since not every closed cutve
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lying in R can he shrunk to a point without leaving
R. as is observed by considering a curve surrounding ¥
DEFGD for example. The boundary of R, which con-
sists of the exterior boundary AHJKLA and the inte-
Hot houndary DEFGD, is to be iraversed in the pos-
itive direction, so that a person traveling in this di-
rection always has the reglon on his left, It is seen 4
that the positive directions are those indicated in the
adjoining figure,

T
E3 L

Gt o g g
i g g DR g
PO g L S T
5

I o, Sy
f o sy, ’&f

In order to establish the theorem, construct a K
line, such as 4D, called a eross-eus, connecting the o
exterior and interior boundarles. The region hounded
by ADEFGDALKJHA is simply-connected, and so
Green’s theorem is valid, Then

ff Mdx + Ndy = ff (%’—V——%@)dxdy
x ¥
R

ADEPGDALETHA

But the integral on the left, leaving out the integrand, is equal to

I R R N

AD DEFPGD ALKJHA DEFGL ALETH 4

since -!i‘l) = _-gA - Thus if £, is the curve ALKJHA, C, is the curve DEFGD and C is the boundary of R
consisting of €y and €, (traversed in the positive directions), then j;, + fG = J; and so
1 2

é oN oM

Hdx + Nd = =1 . oy dyd

C x ¥ ff (ax ay} x ey
&

11. Show that Green’s theorem in the piane holds for the region R, of the figure below, bounded by
the simple closed curves €,(ABDEFGA), Co(HKLPHY, Cq (QSTUQ) and C,(VFX¥P).

Construct the cross-cuts AH, LQ and T#. Then the tegion bounded by AHKLOSTVWXYVTUQLPHA-
BDEFGA is simply-connected and Green’s theorem applies. The integral over this boundary is equal to

f+f+f+f+f+f+ +f+f+_f+f+f
AX HXL Lg osT o VYWXTY FF Iegd [/ LPH. 4 ABDEFGY

Since the integrals along A7 and #4, LQ and QL, TV and VT cancel out in pairs, this becomes
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N R I N N |
EXL ose VWYYV reg LPE ARDEPGA
] (f+f) +(f+f) e
KEL LPE osr ryg FHYFV ABDEFG A
R
BELFPR g VWYYV ABDEFGA

-
-
—
-
=

where € is the boundary consisting of €,, C;, Czand C;. Then

§M[ﬂx+Ndy = ff(%—“—'—%)dxdy
C f x Y

as required.

12. Prove that f Mdx + Ndy = 0 around every closed curve { in a simply-connected region if and
4

oM - oN evetywhere in the region.

only if == =
¥ dy Ox
Assume that M and N are continuous and have continuous partial derivatives everywhere in the region

R bounded by €, so that Gteen’s theorem is applicable. Then

fde-FNdy = ff(ﬂ—-ﬂ)dxdy
P % " Oy
v £

oM ON R, then clearly f Mdx + Ndy = 0.

S - ox
(4

ON _ oM ~ 0 sat a point P, then

Conversely, suppose fﬁ Mdx + Ndy = 0 for all eurves ¢, If =—
from the continuity of the derivatives it follows that :@'X — % 0 in some region 4 swrrounding P, If
x ¥

It

T" is the boundary of 4 then
f Mdx + Ndy = ff(:a-”- —Mygigy > o0
A A

which contradicts the assumption that the line integral is zero around every closed curve.
Eﬁ- _B_g = 0 at sll points.

assumption -B—V —_ oM < 0 leads to a contradiction. Thus -
Yx Oy o9x oy

Similarly the

@,-."1 oN is eguivalent to the condifion VxA = 0 where A = Mi+ Nj

Note that the condition =
By  Ox
(see Problems 10 and 11, Chapter 53. For a generalization to space curves, see Problem 31,
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=yl +xj

Let iy

13. F

explain the results,

i i k
(@) VxF = o 2 ;a— = 0 inanyregion excluding (0,0).
ax ay oz
¥ x
PR 0

—ydx +xdy

() :£F.dr = :{

. Let x= pcosch, y= psind, where {0.¢) are polar coordinates.

x.2+y2
Then
dx = — psing dp + dp eos P, dy = poosd dp + dosindd
—vd i - :
and so _ﬁ?{l = dip = d(arc tan %)

115

(#) Calculate VxF. (b) Evaluate fli‘-dr stound any closed path and

For a closed curve 4BCDA (see Figure (a) helow) surrounding the origin, ¢ =0 at 4 and =27
2

after a complete circuit back to 4. In this case the line integral eqgnals [ df = 2m7,

¥ ¥
4]
B £ p
%
2] (;I? . * :
b
K
\\J o K
. x
b 2]
Fle.ta} Pig. (b

For a closed curve PQRSP (see Figure (b) above) not surrounding the origin, ¢ =¢by at P and

=]
@ = g after a complete circuit back to F. Inthis case the line integral equals f dds = 0,
[}
Bince F = Mi + Nj, Vx F =0 is equivalent to E.’l'! = %ﬁ_
ad X

dict those of Problem 12. However, no contradiction exists since M = ;{;—12 and N =

x
%2+

and the results would seem to contra-

yo do

not have continuous derivatives throughount any region including (0,0), and this was assumed in Prob.13,

THE DIVERGENCE THEOREM

14. {@) Express the divergence theorem in words and (b) write it in rectangular form,

(¢) The surface integral of the narmal component of a vector A taken over a closed surface is equal to the

integral of the divergence of A taken over the volume enclosed by the surface,
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' a4, oA QA
(b) Let A = 4ii + Agj +4gk. Then dvA = VhA = =2+ =2 4 =5
o | Oy | oz

= pyi+np,j +ngk. Then nq = nei = cosd, g = M-j

The unit normal to §is n =
ng = n'k = cos Y, where oc,;S,y are the angles which n makes with the positive x,¥,z axes of i.i,k

directions respectively. The quantities cos O, cos /5, cas 7y are the direction cosines of n. Then

= cos 5 and

(Agi+A4g5 + Agl) - (cos 0T + cos3j + cosy k)

1]

A-n

Aqcos @ + Agpcos B3 + Agcosy

and the divetgence theorem can be written

ff (% + CLER aAS)dxdydz = ff(Aicoer + Ageos 3 + Apcosyyds
:  dy Oz g

15. Demonstrate the divergence theorem physically.

Let A = velocity v at any point of & moving fluid.- From Figure (o) below:

volume of fluid crossing 45 in Mt seconds
= voplume contained in cylinder of base 45 and slant height vl

= (vAry+ndS = vn as M

Then, volume per second of fluid crossing d5 = v+1p a3

Fig. (5

Fig. (a)

From Figure (&) above;

Tatal volume per second of fluid emerging from closed surface 5

[f v

g

[}

From Problem 21 of Chapter 4, V.v dV is the volume per second of fluid emerging from a volume ele-

ment d¥. Then

Total volume per second of fluid emerging from all volume elements in §

= ff VevdV
¥
Thus ff vendS = ff VevdV
’ ¥

8
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15. Prove the divergence theorem.

Let 8§ be a closed surface which iz such that any line paraliel to the coordinate axes cuts S in at
most two points. Assume the equations of the lower and upper portions, 51 and Ss, to be z=f(x,y) and
z=f(x,x) Tespectively. Denote the projection of the surface on the x¥ plane by B. Consider

4 34 By 34
fff aj dv ff a: dedyde = ff f a: dz | dyds
¥ ¥ bis

z=f(x,y)
ff4 : )|jc2 dyds = (4 4 1dvd
< 3(x:y!z sz;L 7 x - B(xd’a};) - a(x:y’f1) y X
R B

For the upper portion S5, dydx = cos 7V, d$, = k-my dS; since the normal ny to S, makes an acute
angle ¥, with k.

For the lower portion Sy, dyds = — cos Y1485, = —%ken, 45, since the normal n, to §; makes an ob-
tuse angle ¥, with k.

Then ff Aax,y, fo)dvdy = ff Ag kens dS55
R

Sa

fan(x,y,fijdydx = - ffz‘igk'ﬂidsi
i .

)
and
ff{l,;(x,y,fg) dydx — ff{ls(x,y,fi) dydx = ff/iq keng 48, + ffAs K-n; 4§,
Y £ Sp 51
= ff/lq k'n dS
8
50 that
(1) fff%ﬁsdv = ffAsk-ndS
-
2 i

Similarly, by projecting § on the other coordinate planes,
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ET Y
ox
¥ Ny
o J[fa - [
8
Adding (1), {2y and {3},

% z
7 g

o ff V.Adv ffA-ndS
[4 3

The theorem can be extended to surfaces which are such that lines parallel to the coordinate axes
meet them in more than two points. To establish this extension, subdivide the region hounded by S into
subrezions whose surfaces do satisfy this condition. The procedure is analogous to that used in Green's
theorem for the plane,

i

1

17. Evealuate ff ¥.ndS, where F = 4xzi — ij +yz%k and 5 is the surface of the cube bounded
by x=0,x=1, y=0,y=1,2=0,z2=1

By the divergence theorem, the required integral is equal to

ff V.Fdv fff [%(4“) + -a%((_,yg) + %(yz)] dv
§ v
| i |
fff (dz—y)dlV = f j f (4z —y) dz dy dx
4

x=0 ¥=0 =z=0

1 1 1
f f 27 —yz |Z=od,va’x = f f (Ze—yYdydx =

x=0 ¥=0 =0 y:O

t]

vajee

The sutface integral may also be evaluated directly as in Problem 23, Chapter 5.

18. Verify the divergence theorem for A = 4xi — 23#;' + 22 &k taken over the region bounded by
x2+y2 =4, z=0 and z=3,

Volume integral = ff Viaay = fff‘: (4x) + = (—2y )+ 2 (ZQ)]
¥
Va—xZ 3
ff (4—4y +22)dV = J‘ f J‘ (dmdy+3zydzdydx = 847
¥

x=-2 y=-/B-xF z=0

The swrface S of the cylinder consists of a base 54 {(z=0), the top 8. (z=23) and the convex portion
Sq (x%+y” = 4). Then :
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Surface integral = ff)\-n d8 = ffA-n dSs + ffA-n dS; + ffﬁ-n d8q

5 & i 85

on Sy{z=0), a=—K, A =4ri—2%} and Aen =0, so that ffA-n d5; =0.
15'1

On S, (z=3), n=k, A = 4xi— 2%j +9k and A-n =9, sothat

ffﬁ-n ds, = Sffa’SQ = 367, since area of S; = 47

B S

On S5 (x2+y% = 4). A perpendicular to x2+y2 =4 has the direction Va2 +42) = oxi + i,
5 ¥ ) ¥

it o Ptyi
Qf..l.__” = 24 5 Y since x2+y2=4.
Vax?+457

xi;}'j) - 23_9{9

Then a unit normal is n =

An = (dxi—27F+ 27Ky . ¢

dV =dedydz 5%

From the figure above, x = 2cos &, y = 2sin &, d5; = 2 d8dz and so

i}

29 3
ffA-n dSg f f [2¢2 cos 8 — (2sin O] 242 40
SS d=0 z=0

i

271 277 )
f (48 cos” () — 48 sin®&Yd9 = f 48 cos?HdE = 487
=0 F=0

Then the surface integral = 0 + 367 + 4877 =

847, agreeing with the volume integral and verify-
ing the divergence theorem. .

Note that evaluation of the surface integral over Sq could also have been done by projection

of 52 on
the xz or ¥z coordinate planes.

19. If divA denotes the divergence of a vector field A at a point P, show that

A'n dS
divAa = im &8 .
A7-p AV

where AV is the volume enclosed by the surface AS and the limit is obtained by shrinking A}
to the point P.
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By the divergence theorem, fff diva dV = ff Asn dS
AS

AF

By the mean-value theorem for integrals, the left slde can be written
div A fffdl’ = diva AV
AT

where div A is some value intermediate between the maximum and mipimum of divA throughout AY. Then

Q‘A-nds

diva = ——(/——

AV
Taking the limit as AV such that P is always interior to Ay, divA approaches the value divA &t

point P; hence
f A-nd§
divAa = lm 2
AF~D AV
This result can be taken as a starting point for defining the divergence of A, and from it all the prop-
erties may be derived including proof of the divergence theorsm. In Chapter 7 we use this definition to
extend the concept of divergence of a vectot to coordinate systems other than rectangular. Physically,

f A-n dS
AT
Ay ,
represents the flux or net cutflow per enit volume of the vector A from the surface NS, If divA is positive
in the neighborhood of a point P it means that the outflow from P is positive and we call P a source. Sim~
flatly, if div A is negative in the neighborhood of P the outflow is really an inflow and P is called a sink.
If in & region there are no sources or sinks, then divA = 0 and we call A a selensidal vector field.

20. Evaluate ffr-n dS, where § is a closed surface,
S

By the divergence theorem,

ffr-ndS ff Ver dV
3 7
fff(faa;i + —a%j + %k) c(xi+yirzR) AV
¥
%, Y LD . fff ]
ff &ty T 7 v = 3V
7 ¥

where V is the volume encloged by 5.

21, Prove fff(qbvgr,b — YV dV = ff@v(p — YV . dS.
¥

h

1}

Let A = ¢V in the divergence theorem. Then
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ff Vi@Vindr = _ff(qbvw)-nds = f @OV vds
4 i

8

But VegVidy = d(V-Vdy + (Ve (Tyy = VY + (Vy-(Viy

me [ffvevne - [[f 0T wpmma
¥ ¥

or

(I ff [V + (V- (Yl av = f @Vin-ds
¥ 8

which proves Green's first identity, Interchanging @ and lj) in (1),

(2) ff [V + (Vy-(Ip] av = f WV y-ds
¥ g

Subtracting (2) from (1}, we have

(3) ff @V~ yViyar = f @V - UV ey ds
¥ N

which is Green’s seconrd identity or symmettical theorem, In the proof we have assumed that & and L,b are
scalar functions of position with continuous derivatives of the second order at leaat.

22. Prove ﬂ Vo dF = /fq’m ds.
7

S

In the divergence theorem, let A = ¢ where C is a constant vector. Then

ff Vo@poydr = ffqbc-nds
.

)

stnee Veipc) = (Véh-c = ¢V and $C'n = (¢,

f‘foC-ngdV . {fc-(qbn)ds

Taking C outside the integrals,

o fffvea - o ffome

)

and since C is an arbitrary constant vector,

fffchdV = ffgbnds
14
23. Prove ff VdeV=ffandS.
¥ s
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In the divergence theotem, lef A =BxC whereC s a constant vector. Then

ff V. Bxc)dV ff(BxC)-n ds
¥ 8

Since V-(BXC) = C-(VXB) and (BxC)+n = B-(Cxn) = (Cxn)*B = C-(nxB),

fffc-(VxB)dV = ffc-(nxl})ds
7 it

Taking C outside the integrals,
c- ff nx B 48

C ff VxBdV
¥ h
and since C is an arbitrary constant vector,

ff VxBdV = ffandS
¥ 5

24, Show that at any point P

ffq‘;nds ffnxAdS
, _ . AS v _ . AS
(ay V& é;r_r}o Sy and (" X A ﬂllyl}}o A

where AV is the volume enclesed by the surface AS, and the limit is obtained by shrinking AV
to the point P.

(2} From Problem 22, ff Vb dv = ffqbnds. Then ff Vi dV = f ¢nai dS.
AF ity AF AS

Using the same principle employed in Problem 19, we have

{gfq‘m-i ds

Ay

where ViP.i is some value intermediate between the maximum and minimum of Vb« i throughout AV.
Taking the limit ag AV—0 in such a way that P is always interior fo AV, Vci)-i apptoaches the value

{f Pnids

V.l =

(I Vi = 1
A%’To ANV
Similarly we find
. f f Bnej dS
, 3
2 Vaei = 1 [
@ o Mglo Ay 4
f f nk dS
@& Vé.k = lim £

AF-0 AV
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Multiplying (1), (2}, (3) by 1,j.k respectively, and adding, using
Vo = (Vi + (V-pi + (VPk, n = @Di + @) + mek)k

(see Problem 20, Chapter 2) the result follows,

() From Problem 23, replacing B by A, ff VxAdV = ff nx4ads.
AF AS

ff (nxAj.i dS
(Vxayi = um &5

it L/XV

Then as in part (2}, we can show that

and similar results with j and k replacing i. Multiplying by i, i,k and adding, the result follows.

The results cbtained can be taken as starting points for definition of gradient and curl.
these definitions, exiensions ean be made to coordinate systems other than rectangular.

25. Establish the operator equivalence
Vo = lim L # s o
AF=o AV
A3

where o indicates a dot product, cross product or ordinary product,

123

Using

To establish the equivalence, the results of the operation on a vector or scalar field must he consist-

ent with already established results.

If o is the dot product, then for a vector A,

Vea = lim —l—ffdso.a
Ao A
AS
D¥
divA = lim ——l—ffds-A
Aro AV
AS

w L ff
lim — A-n 45
AF-0 AV
Ag

n

established in Problem 19.

similarly if o is the cross product,

cutlA = VxA =  lim —lfdexA
A0 AV

= - 1 ﬂ
= 1lim nxads
Ay AF

established In Probiem 24 (53,

Also if o is ordinary multiplication, then for & scalar &b,

Vood = 1im -1 ff dg o ¢ Vé = 1im L ff ds
°P o= lm A cPoa Ve - Im ST )
NS Ag

established in Problem 24{a).
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26. T.et S be a closed swface and let r denote the position vector of any point {x,¥,z) measured from

an origin 0. Prove that
n-r
— d5
./:[ rg

g
is equal to (@) zeto if O lies outside 5; (b) 47 if O lies inside S. This result is known as Gauss’
theorem.,

{z) By the divergence thecrem, ff BT g5 = ff Loy
8 5
& ¥

But V. rq = 0 (Probiem 19, Chapter 4} everywhere within ¥ provided r # 0 in ¥, i.e. provided O
r

is outside of ¥ and thus outside of 5, Then ff n_rqr d5 = 0.
5

(by 1f 0 is inside S, surround © by a small sphere s of radins a, Let 7 denote the tegion bounded by 5 and
s. Then by the divergence theorem

[ - [Joro- [Tos - oo -

St g s T

since r £ 0 in 7. Thus

Nk n-r
a5 = = =5 d5
5 3
2
Nowons,r:as,n:~-L so that ML Lﬂ __r-Ar__a_‘t =—l.; and
4 re a? a a frd
n«r . n-r 1 i 47a
ff;;ds=_ff—qdf;=ff—{l-é@:?ffds: 6’9 = 47
i S g

27. Interpret Gauss® theorem (Problem 26) geometrically.

Let 45 denote an element of surface area and
connect all points on the boundary of 45 fo O (see
adjoining figure), thereby forming a cone. Let 40} he
the area of that portion of a sphere with O as center
and radins - which is cut out by this cone; then the

solid aagle subtended by 45 at O is defined as deo =
dr_g and is mumerically equal to the area of that por-
tion of a sphere with center O and unit radius cut out
by the cone. Lei n be the positive unit normal to 45

and call & the angle between n and r; then cos g =

n?-l" Alsa, dﬂ=i‘a’8cos§=i'n;r 45 4o that

doy = & '%s—r d5, the + or — being chosen according

as n and r form an acute or ah ohtuse angle 8 with
each other.

Let § be a surface, as in Figure {a} below, such that any line meets 5 in not more than two points,

If O lies outside §, then at a position such as 1, % d5 = de; wheteas at the corresponding position 2,
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3:'3—‘ d5 = —dew, An integration over these two regions gives zero, since the contributions to the solid

angle cancel ont. When the integration is performed over 5 it thus follows that ff% 45 = 0, since for
h

every positive contribution there is a negative one.

In case O Is inside S, hewever, then at a position such as 3, '13" d5 = duw and at 4, %f 45 = dew

‘80 that the contributions add instead of cancel. The total =olid angle in this case is equal to the area of a

unit sphere which is 477, so0 that ffﬂra—r dS = 477,
by

Fig. (a3 Fig. by

For surfaces S, such that a line may meet S in more than two boints, an exactly similar sityation
holds as is seen by reference to Figure (b} above. If O is outside S, for example, then a cone with vetrtex
at O intetsects § at an even number of places and the contribution to the swrface integral is zero since the
solid angles subtended at O cancel ont in pairs. If O is inside 5, however, a cone having vertex at O in-
tersects § al an odd nuwmber of places and since cancellation occurs only for an even number of these,
there will always be a contribution of 477 for the entire surface 5.

28. A fluid of density £lx.y,z,£) moves with velocity V{x,y,z,t). If there are no soutces or sinks,
prove that

V-J+§—f=o where J = pv

Consider an arbitrary surface enclosing a volume ¥ of the fluid. At any time the mass of fluid within

Vis
M = ff oday
F
The time rate of increase of this mass is
a3
&= 2 ew - [ff 2w
F ¥
The mass of fluid per unlt time leaving ¥ is

f pven 48

i
{(see Problem 15) and the time rate of increase in mass is therefore
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-—ffpv-ndS = —ff V. (ov)dV
N ¥

by the divergence theorem. Then

fffiqdv = —ff V- (ov) dV
ot
¥ 7
fff(v.(pv) +B—p)¢ﬂf = 0
. Ot

gince V is arbifrary, the integrand, assumed continuous, must be identically zero, by reascning simi-
lar to that used in Problem 12, Then

or

V-3 + % - g where J = ov
ot

The equation iz called the continuity equotion. If 018 a constant, the fluid is incompressible and Vev=
0, i.e. v is solenoidal.

The continnity equation also arises in electromagnetic theory, where 0 is the charge density and
I = ov is the current densiy.

If the temperature at any point (x,¥,z) of a solid at time ¢ is U(x,y,z,t) and if x, o and ¢ are Te-
spectively the thermal conductivity, density and specific heat of the solid, assumed constant,
show that

?} H

—B-% - kYU where k= x/pe

Let ¥ be an arhitrary volume lying within the solid, and iet S denote its surface, The total flux of
heat across §, or the quantity of heat leaving § per unit time, is

ff(-—-KVU)-n ds
3

Thus the quantity of heat entering $ per unit time is

05 ff(xVU)-n s = ff V. VUy dV
3 7

by the divergence theorem, The heat contained in a volume V i given by

[[fwves
¥
Then the time rate of increase of heat is

2 fffeovar - [ff o g e
) 3 . coUdV V ep S AV

Equating the right hand sides of {1) and {2).

fff [cp-a—br—v-(KVU)]fiV = 0
v ot

and since V i arbitrary, the integrand, assumed continuous, must be identically zero so that
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du

= V.« V
Bt Vo)

ep

orif x,¢,0 are constants,

U | K g, . 2
5 " chVU = g VU

The quantity % is called the diffusivity, Tor steady-state heat flow (i.e. % =0 or U is independent of

time) the equation reduces to Laplace’s equation VQU =0,

STOKES’ THEQREM
30. (a) Express Stokes' theorem in words and (b) write it in rectangular form.

(z) The line integral of the fangential component of a vector A taken around a simple closed curve ( is

equal to the surface integral of the normal component of the curl of A taken over any surface § having
¢ as its houndary.

(by As in Problem 14 (b},
A = Ajl+4oj+ 43k, n = cosi+cosB]+ cosyEk

Then
i i k
v - |2 L 2| . (Sds_Bdpyy B4y Wy, By My,
*A > Y % S T TS eI R
41 Ap As
04y 94, dd, B4, dd,  dd,

(Vxa)yn = (———a;——E-—)cos(x + (-B—Z—-—a—-)cosﬁ + (Bx -—Ty)cos’y

A-dr = (Al +Apj+ Agky@dxi+dvi+dzky = Aydx + Aody + Agd:z

and Stokes' theorem becomes

0d; 04, 94, 94, B4, 24y _ f‘
{f [(ay -3, Yeos O + (Bz ol cos 3 + (-;— - gy—) cosy]ds = A Agdx + Apdy + Agd =

31. Prove Stokes’ theorem. z

Let S be a surface which is such that its projections
on the xy, ¥z and xz planes are regions bounded by simple #
closed curves, as indicated in the adjoining figure. As- 55
sume S to have representation z=f(x,y) or x=g(y,z) ot £
y=h{x,z}, where f, g,k are single-valued, continuous and :eecrizssils
differentiable functions, We must show that

ff (VxAj.n d8 ff [Vx(d, 1+ 4, +Adsk)]on dS
§ g
§A-dr

[
where ' is the boundary of 3.

H

H
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Consider first ff [Vx(d,0)] +n dS.
s

i i k
| .l 2 2 ody o My
Slnee Vx (d.y = 3 By O = 51 3 k,
Ay g 0
od, 04,
(H [Vx(Aii)]-n ds = n+j — —mn-k)dS
dz ay
If z=f(x,y) is taken as the equation of S, then the position vector to any point of §is r = xi+yj+zk =
zi +¥]+ f(x,y)k so that % =i+ % k=j+ %k. But % is a vector tangemt to S (see Problem 25,
Oy
Chapter 3) and thus perpendigula.r to n,yso that ’
o R Oz . Oz
B+=— = n+j +=mn:k = 0 or n+j = —-—n-k
Sy Oy dy
Substitute in (1) to ohtain
24, 04, 04, 9z ZH
i — 22 pkydS = (=2 n'k — ——n:-k)d8
(F M- Mo “3 5 5, M
or
BA:L BA:L BZ
pdS = —(—+-——_"3pkds
(2) [Vx(4:1)]+m S "5 3"
YA,  PA, 2 oF
Now on 8, Aj(x,y,z) = Al(x,y,f(x,y)) = F{x,y); hence -1 Ay o2 = OF and (2} becomes
Oy Bz Oy dy
. oF
Vx4 1)]-11 &8 = -—-B—F nkdS = — = dxdy
: dy G
Then
f [Vx(di)]-n dsS = J‘J‘—E-E dx dy
dy
& R

where R is the projection of § on the xy plane. By Green’s theorem for the plane the last integral equals

F dx where 1 is the boundary of K. Since at each point {x,y) of I" the value of F is the same as the

value of A, at each point (x,¥,2) of C, and since dx is the same for both curves, we must have

‘{FFdx = i;fiidx
ff [V 4] a5
5

Similarly, by projections on the other coordinate planes,

f [(VxA,8]-p &S

8

ff [Vx (Agk)) + n dS
3

or

Il
= oS,
i
N
a
o

n
g,
S
W
R,
™
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Thus by addition,
ff(VxA)-n ds = f A-dr
g [

The theorem is also valid for surfaces 5 which may not satisfy the restriciions imposed above. For
agsume that S can be subdivided Into surfsces 51: 5a, “'Sk with boundaries (4, C,, ...C;,z which do satisfy
the resirictions. Then Stokes’ theorem holds for each such surface. Adding these surface integrals, the
tolal surface integral over 5 is obtained. Adding the corresponding line integrals over €y, G, ... Ck , the
line integral over € is obtained,

- 32. Verify Stokes’ theorem for A = (Zx—v}1—y#j—y"zk, whete § is the upper half surface of
the sphere 2” +42 + 22 = 1 and € is its boundary.

The boundary C of S is a circle in the xy plane of radius one and centet at the origin. Let x=cos:,
y=s8lnz, =0, 0 < ¢ < 2 be parametric equations of C. Then

f A-dr = f (2% —v)ydx — v%dy — 422 dz
¢ (4
27
= f {2cos: — sing) (—sinsydt = 7
A .
i i k
e d d
1 f = - _ — -
Also Vxa ~ 3 oy k
;t—y  —yzZ 4%y
Then ff(VXA)-n s = ffk-n d5 = ffdx dy
g ) R

since n-kdS =dxdy and R is the projection of S on the xy plane, This last integral equals

! v 1=x2 bopv-x® I
f f dy dx = 4f f dy dx = 4f V1—x%dy = g7
0 *o (]

i Iy

and Stokes’ theorem is verified.

33. Prove that o necessary and sufficient condition that f A«dr =0 for every closed curve Cis
(4

that Vx A =0 identically.

Sufficiency. Suppose Vx A = 0. Then by Stokes’ theorem
et by A

f!\-dr = f (Vxayemds = o

4 S

Necessitv, Suppose f A:dr =0 around every closed path (, and assume V x A #0 at some point
[
P, Then assuming VxA is continuous there will be a region with P ag an interior point, where VxA 0.
Let 3 be a surface contained in this region whose normal n at each point has the same direction as VxA ,
ie. VxaA = gn where o is a positive constant. T.et € be the boundary of 5. Then by Stokes’ theorem
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fA-dr = f(VxA)-na!S = Oiffn-nds >0
3

¢ s

which contradicts the hypothesis that f A-dr=0 and shows thaf VxA =0.
4

B
It follows that VxA =0 is also a necessary and sufficient condition for a line Integral f A.dr

B

to be independent of the path joining points P, and P? . (See Problems 10 and 11, Chapier 5.)

34. Prove fd'pr = ff(nxV)xB ds.
)

In Stokes? theorem, let A = Bx € where C is a constant vectot, Then

j;dr-chC) - ff [Vx®xcylen ds

hy

:fC-(dpr) = f lic.-VyB — c(V-B)] - n d5
S

c.3§ drxB = f f[(c.-VyB]-nds - ff [c(V-B)]-n dS
3 3
= ffc [VB-m)} 45 - ffc [n¢V.BY} dS
S 5
= cff [VB-n) — n(V-BY] 45 = C-ff(nijXBdS
g 5

Since € is an arbifrary constant vector f dEXx B = ff (ﬂxv) xR dS5
By

35. If AS is a surface bounded by a simple closed curve €, P is any point of AS nof on C and n is
a unit normal to AS at P, show that at P
f A-dr
(4]

{curlA).n = lim
4S—0 NS

where the limit is taken in such a way that AS shrinks to P.

By Stokes' theorem, f {eurl AY.n 25 = f A.dr.
AS ¢

Using the mean value thecrem for integtals as in Problems 19 and 24, this can be written

jv' A-dr
e

AS

(curl Ay'n =
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and the required resuit follows upon taking the limit as AS— 6

This can be used as a starting point for defining curl A (see Problem 36) and is useful in obtaining

curt A in coordinate systems other than rectangular. Since § A«dr is called the circulation of A about
‘ 4

C, the normal component of the curl can be interpreted physically as the limit of the circulation per unit
area, thus accounting for the synonym rotation of A (rotA) instead of curl of A

36. If curlA is defined according to the limiting process of Problem 35, find the z component of
curl A,

P ST AN Dagtu Ay59&»£@y9
atw w e wars &w»» w e o B

T v pr =

=3
g G R
$$wxa»»
o ot 0 e A ‘""“"*’f‘wngww«»\c

s Rl Gen e b e

R
r»v@** e V@@»&¢w;w««yvas

Let EFGH be a rectangle parallel to the xy plane with interior point P(x,v,z) taken as midpoint, as
shown in the figure above. Let A, and A4, be the components of A at P in the positive x and y directions
respectively.

If € is the boundary of the rectangie, then

fA-dr = fA-dr + fA-dr + fA-dr + fﬁ-dr

¢ 5F 75 ar EE
‘04
But fA-dr = (Ai—-l- 1A.y fA-dr = -(AH%% Ay Ax
BF GF 4
1 94 1 34
Acdr = ¢4 ——/_\xA f-a' = (A, — L+ 502
f r (9+2a ) A-dr tAs 28&)Ay
bt KE
except for infinitesimals of higher order than fx My |
: a4
Adding, we have approximately f Adcdr = (= 3 e —C-A—%)/\x Dy,
" x
Then, since AS = Axly,
A-dr
=z component of cwrlA = {curlA)-k = lim
Ag-0 AS
34, 04,
— — T A A
= lim o L ’
Lx—0 JAP" Ay
Ay-0
04y o4y

¥ oy
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37.

38.

38.

40.

41

g2,

43.

44.
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SUPPLEMENTARY PROBLEMS

Verify Green’s theorem in the plane for f (SxQHS;vQ)dx + (4v — Bxy)dy, where C iz the houndary of the

4
region defined by: (@) ¥ =vx, ¥y =42; (b) x=0,y=0, x+y =1,
Ans, (@) common value = 3/2  (b) common value = 5/3

Evaluate f {3qx +4y)dx + (2x —3y)dy where C, a circle of radius two with center at the origin of the xy
[
plane, is traversed in the positive sense. Ans. — 877

Work the previous problem for the line integral f (22 +y2)dx + 3xy? dy. Ans. 127
[

Evaluate f (+2— 2xy)dx + (x°y +3)dy around the houndary of the region defined by ¥Z=8x and x = 2
{a) directly, (&) by using Green's theorem. Ans, 128/5

(7,2}
Evaluate f (6xy —y ydx + (3%° — 2xy)dy along the cycleid x = F—sind, ¥ = 1 —cos .
(0,0)

Ans. 6TE—a7r

Evaliuate f (3x2+2y)dx — (x +3cosy)dy atound the parallelogram having vertices at (0,0}, (2,09, (3,1}
and (1,1).  Ans. —6 ' '

Find the area hounded by one arch of the eyeloid x = a(f — sin&, v = a(l — cos ), &>0, and the x axis.
Ans. 377a?

Find the area bounded by the hypeeyeloid P y2/3 = agﬁ, e> 0.
Hint: Parametric equations are x =acos® &, y = a st 6. Ans. 37a¥8

. Show that in polar coordinates (£, the expression xdy — ydx = fPdd.  Interpret 3 f xdy — ydx.

44.

47.

48.

49,

50. Evaluate f

Find the area of & loop of the four-leafed rose © = 3 sin 2¢. Ans. 971/8
Find the area of both loops of the lemniscate &7 = & cas 2. Ans, a?
Find the area of the loop of the folium of Descartes ¥

497 = Jaxy, o> 0 (see adjoining figure).
Hint: Let v =¢x and obtain the parameiric equa-

tions of the curve. Then use the fact that
Area %§xdy—ydx

+x
= 5 ¢ 22ddy 2

Yo
= %§ x2 ot

3o, 3

7

Ans, 3a%2

Verify Green’s theorem in the plane for f (26 —¥*ydx — xydy, where C i3 the boundary of the region en-
4

closed by the cireles x2+42 = 1 and 22+yZ= 9, Ans. common value = G077

(=10} — ydx +xd
x +xdy . .
(1.0 Pty along the following paths:
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{¢) straight line segments from (1,0) to (1,1), then to {—1,1), then to (—1,0).
(b) straight line segments from {1,0) to (1,—1), then to (—1,—1), then to (—1,0).

Show that although 9 = %ﬁ
X

Ars. @Y7 by -7

133

» the line integral is dependent on the path joining (1,0} to (—1,0) and explain.

51. By changing variables from (x,y} to (u,») according to the transformation x = x{&,v), ¥ = ¥(u,v), show that
the area 4 of a region R bounded by a simple closed curve £ is given by
%
_ £,y x,¥ _ Ou Ou
4 = ff |”u,v)|d“d” where ”ﬁ) = o, a_y
k ¥ o

is the Jacoblan of x and ¥ with respect to u and v. What restrictions should you make ? [lustrate the re-
sult where # and v are polar coordinates.

Hint: Use the result 4 = 'éf xdy — ydx, transform to z,v coordinates and then use Green’s theorem.

52

Evaluate ff F'ndS, where F = 2xy i +¥z2]+x2k and Sis:
8
(z) the surface of the parallelepiped bounded by x=0,y=0, z=0,x=2,y=1 and z=3,
(b} the surface of the region bounded by x=0, y=0,¥=3,z=0and x+2z=§6.
Ans. {a}y 30 (&) 351/2

Verify the divergence theorem for A = 2% 1 — 4% j + 4xz” k taken over the region in the first octant
bounded by y2+z2=0 and x=2. Ans. 180

53.

54. Evaluate ff r-n 25 where (@) 3 is the sphere of radius 2 with center at (0,0,0), (5) S is the swrface of
h

the cube bounded by x=~1,y=—1, z=—1, x=1, v=1, z=1,
z = 4— (" ++?} and the xy plane,

{c) § is the smrface bounded by the paraboloid
Ans. (a) 327 (b)Y 24 (c) M7

55. If S is any closed surface enclosing a volume V and A =

axi+byj+ezk, prove that ff A-n dS =
{a+b+e) V,

h)

56. If H=curlA, prove that ff H-n 45 = 0 for any closed surface S.
3
57. If n is the unit outward drawn normal to any closed surface of area 5, show that fff divn 4F = §.
F
58. Prove ff ‘f_Q—V = fff;;-'}ds.
4 S
ffrf’n 5 = ff 521 4V,
5 4

jf nd5 = 0 for any closed swface S.
Ry

61. Show that Green’s second identity can be written fff(c;bvgi,b - gbvgqi))dli’ = ff (ch g%’ - !,b%?)dS
V iy

9. Prove

60. Prove

62. Prove ffr xd8 = 0 for any closed surface 8,
b
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63,

64.

65

66

.

67.

68.

69,

70.

1.

3.

T3

4.
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Verify Stokes’ theorem for A = {y —z +2)i + (yz +4}i —xzk, where S is the surface of the cube x=0,
y=0,2=0,x=2,y=2, z=2 #bove the xy plane. Ans. common value = —4¢

Verify Stokes’ theorem for F = xzi—%j +x?yk , where 5 is the surface of the region bounded by x=10,
¥=0,z=0, 2x+y +2z =8 which is not included in the xz plane, Ans. common value = 22/3

Evaluate ff(VxA)-n dS, where A = (xZ+y—d4)i+3xyj+(2z +z9)k and S is the surface of (a) the
5

hemisphere x2+y2+z% = 16 above the xy plane, (b) the paraboloid z = 4 — (x*+y%) above the xy plane.

Ans. (a) —1877, (b) —47

If A= Qyzi— (x+3y--j +(xZ+2)k, evaivate ff(vxﬁ)'n 45 over the surface of intersection of the

b
2 which is included in the first octant, Ans. — %(3w+ 8a)

cylinders x2+yZ = g2, 2

x7+z2= g

A vector B iz always normal to & given closed surface 5. Show that fffcurlB dV = 0, where V is the
region bounded by S,

i f E+dr = —cl :éa* fﬂ-a’s. where S is anv surface bounded by the curve €, show that VxE =
0 £
_1lom
¢ Ot
Prove f & dr = f d8 x Vb,
¢ ;
Use the operatar equivalence of Solved Problem 25 to arrive at (@) Vb, (b)Y V-A, (¢) Vx A in rectangular

coordinates,
Prove fffVc;DA ay = ffqbﬁ-n ds - fffcha dv.
1 S 4

Let t be the position vector of any point relative to an origin 0. Suppose ¢b has continuous derivatives of
order two, at least, and let S be a closed surface bounding a volume ¥, Dencte ¢ at O by &,. Show thaf

[f1298 - ovdsyas - [[fV8ar v a
g (4

where &=0 or 47T§f>0 according as O is outside or inside 8.

The potential ¢>(P) at a point P(x,y,z) due to a system of charges (or masses) @y s G o+ §,, having position
vectors t,r.,. ..., T, with respect to P iz given by n
- im
v - Lo
m:

Prove Gauss’ law

ffE is = 47Q

where E = —Vcb iz the electric field mtensﬂy, § is a surface enclosing all the charges and Q= E I
is the total charge within S. m=1

If a region ¥ bounded by a surface S has a continuous charge {or mass) distribution of denmty f2R the po-

tential ¢ (P) at a point P is defined by = fJ‘J')O

(@) J.fE-dS = 477 fff,o d¥, where E=~qu.
3 ¥

2 . 2
1)) \% ¢ = — 470 (Poisson’s equatien) at all points P where charges exist, and V' qb = 0 (Laplace’s equa-
tion) where no charges exist.

. Deduce the following under suitable assumptions:



Chapter 7

TRANSFORMATION OF COORDINATES, Let the rectangular coordinates (x,¥,z) of any point be
expressed as functions of (u., u,, i3} So that

) X = WUty bg), Y = ¥ty Uy ), £ = (U, Uy, ly)

Suppose that (1) can be solved for u,y, u., u; in terms of x,v,z, i.e.,
(H u, = w,%,¥,2), By, = U (X,¥, %), By = u{x,¥,2)

The functions in (1) and (2) are assumed to be single-valued and to have continuons derivatives so
that the correspondence between (x,y,z) and (v, u,, ug) is unique. In practice this assumption may
not appiy at certain points and special consideration is required.

Given a point P with rectangular eoordinates (x,¥,z} we can, from (2) associate a unique set

of coordinates (uq,u,,u;) called the curvilinear coordinates of P. The sets of equations (I} or (2)
define a transformation of coordinates.

ORTHOGONAL CURVILINEAR COORDINATES.

The surfaces u,=¢;, #p=0y, Ug=cCy, WHELe
€1.¢,c5 are constants, are called coordinate sur-
faces and each pair of these surfaces intersect in
curves called coordinate curves or lines (see Fig.1).
If the coordinate surfaces intersect at right angles
the curvilinear coordinate system is called orthogo-
nal. The u,,u, and u, cootdinate curves of a curvi-
linear system are analogous to the x,y and z coor-
dinate axes of a rectangular system,

UNIT VECTORS IN CURVILINEAR SYSTEMS. Let r = xf +yj + zk be the position vector of a point
P. Then ¢I) can be written t = r (s, to, a), A tan-

gent vector to the u, curve at P (for which u, and u, are constants) is :gi-r— . Then & unit tangent

vector in this direction is e, = /l 1 80 that aa—" =h e, where hy, = ] Br | Bimilarly, if
. Hq

e, and e, sre unit tangent vectors to the ug and sy curves at P respectively, then Ba_u? = hye, and

'f?:a hieg whete h, = |3r | and hg= |Br . The quantities k,, A, k; are called scale factors.

The unit vectors e,,e,, e; ate in the dlrections of increasing u4, us, g , respectively,

Since Vu, is a vector at P normal to the surface u,=c¢,, & unit vector in this direction is giv-

135
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en by E, = Vu1/| Vu,}. Similarly, the unit vectors Ej= Vu2/| Vu,| and Eg= Vus/] Vu,| at P
are normal to the surfaces u,=c., and us=cy respectively.

Thus at each point P of a curvilinear system there
exist, in general, two sets of unit vectors, e,, e, e, tan-
gent to the coordinate curves and E, E; Es normal to
the coordinate surfaces (see Fig.2). The seis become
identical if and only if the curvilinear coordinate sysiem
is orthogonal {see Problem 18). Both sets are analogous
to the i,3,k unit vectors in rectangular coordinates but
ate unlike them in that they may change directions from

point to point. It can be shown {see Problem 15) that the

sets L , or ’_8_1;_ and Vi, Vu,, Vu, constitute recip- iy
Ju,  Cu, | dug Fig. 2

rocal systems of vectors.

= LTI
- xg«*m-&x‘&m&w@mv

A vector A can be represented in terms of the unit base vectors e, e, ey of Eq, Eo, Eg in the
form

A = Aje + Ae, + d;e, = aE, + a,E, + o, E,

where 4., 45,45 and a4, 0., a5 arte the respective components of A in each system.

% aa: ’.(_)'B;“_ ar Vui, VUQ, VRS which

are called unitary hase vectors but are not unil vectors in general In'this ease

We can also replesent A in terms of the base vectors

g’r + ngz’ + Co=— or Ci@y + Colly + Catly

A= G S Dug

1]

and A

I

1 Vi, + o Vu, + coVuy = Ciﬂ:. + ey + cafs

where (,,C,, C, are called the contravariant components of A and e, ¢y, ¢ are called the covariant
components of A (see Problems 33 and 34). Note that d:b g ﬂp Vup ,p=1,23.
“

ARC LENGTH AND VOLUME ELEMENTS. From r = r(uy, o, 8g) We have

F B P S S

OTHS = ki dﬂ-i [=2) + h-z dIUQ |- + hs dus By
aﬂi 3u2

S

Then the differential of are length ds is determined from
= dr-dr., For orthogonal sysiems, e;-re, = eg,+€3 =
eg-e, = 0 and

ds® = hi duf + k; du; + fi: du:

For non-orthogonal or general curvilinear systems see ,s
Problem 17. eiiee

Along a u; curve, u, and ug are constants so that
dr = hy du, e,. Then the differential of arc length ds,
along u, at P is h;dw,. Similarly the differeniial arc
lengths along #, and ug at P are ds, = hodu,, dsg = hadug.

Referring to Fig.3 the volume element for an or-
thogonal cutvilinear coordinate system is given by Fig. 3
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dV = |(haduier)« (hoduses) x (hoduges)| =  hyhohs duy duodug

since ei-egxegl = 1.

THE GRADIENT, DIVERGENCE AND CURL can be expressed in terms of curvilinear eoordinates.
1f & is a scalar function and A= A,e; + 4,6, + dge,
a vector function of orthogonal curvilinear coordinates u,, u,, 45, then the following results are valid.

_ _ 1 2% 1 9 1 ob
L. V& - grad © = h, B—ui e; + hy du, e, + h-—-—s —~a e,
- _ 1 2 P, o
2. V.a = diva = Fihate [eu1.(ﬁ2ﬁ3;ﬁ11) + ——-vau?(hahiAg) + Bus(hihQAQ)]

hie, hpe, hgeg

1 9 3 3
kj_ kg }13 aui ) ‘aﬂuz Bus

hads  hods  hads

3. VxA = curtA =

o - wore - L [2sh 32, 3 feks 22 v (ke 2%y ]
4 Laplacian of $ b by g Bui( By  Ou * aug( ko 73::2) Qug kg 3”3)

It hy=hy=hs=1 and e;,e, e, are replaced by 1,i,k, these reduce to the usual expressions in
rectangular coordinates where (u4, u,, ug) is replaced by (x, v, 2).

Extensions of the above results are achieved by a more general theory of curvilinear systems
using the metheds of tensor analysis which is considered in Chapter 8.

SPECIAL ORTHOGONAL COORDINATE SYSTEMS.

1. Cylindrical Coordinates (o, ¢, z). See Fig.4 below.

x:pcos¢1 yz;'OSin¢: z =z

where 020, 08¢ 27w, ~w<z<®

hp:]-: ;"¢=,‘O; hz'—_l

2. Spherical Coordinates (r, 9, ). See Fig.5 below,
x = rsiné cosp, y =rsinf sing, =z = rcos®

where r20, 0

IfaN

d<2m, 0S8 <7

- o)
3
]
[
]
I

=r, hg=rsingd
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Fig. 4 Fig. 5
3. Parabolic Cylindrical Coordinates (u, v, z). See Fig.8 below.
¥ = 3(u?—=v%, y =gy, 2=z
whele —o<u <@, v20, —w<z<m
hy=hy=vut+0v?, k=1

In cylindrical coordinates, w = v 2p cos % v = v 320 sin %5, =z

The {races of the coordinate surfaces on the xy plane are shown in Fig.6 below.

confocal parabolas with a common axis.

% 5 ¥ ‘J,,‘ai?'
“xn e
“cg,, gz 32
KD
u=1/2 ..“\“ ey v=1/3
e s% o,
K
=—1/2 ""'... v=1/2
u=—1 ” vy
u"'%m “=3
u"’% “2
V,sf'l h"/e

Fig. 6

They are
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4, Paraboloidal Coordinates (u, v, ).
x = mveosg, y = wsing, :z
where w20, v20, 0Z¢<2m

flu=ﬁv = vVuZ +92, k¢=uv

Two sets of coordinate surfaces ate cbtained by revolving the parsbolas of Fig.6 above
The third set of coordinate surfaces are planes

1
= 3(u%—v?)

about the x gxis which is relabeled the z axis.
passing through this axis.

5.  Eliptic Cylindrical Coordinates (u, v, z). See Fig.7 below.
x = @ coshucosv, ¥ = a sinhzsinv, z =z
where w20, 05v <27, —w<z<®

by, = h, = av'sinh®u +sin®v, h, =1

The traces of the coordinate surfaces on the xy plane are shown in Fig.7 below. They are

confocal ellipses and hyperbolas.

6. Prolate Spheroidal Coordinates (£,77, ).

# = asginh{ sinm cose, y = asinh £ sinm sing, z = ecosh ¥ cosn

where £ 20, 05Snmswm 0=2¢d <27

ke =k, = avsinh®& + sin®7, kg = asinh £ siny

Two sets of coordinate surfaces are obtained by revolving the curves of Fig.7 above about
the » axis which is relabeled the z axis, The third set of coordinate surfaces are planes passing

through this axis.
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7. Oblate Spheroidal Coordinates (£,7, ).

¥ = acosh & cosm cosgh, ¢ = aecosh& cosm sing, z = asinh & siny

where 520,'—-27127}‘;—271, 0% < am

h§ = h, = avsinh®& + sin®7, hg = acosh & cos 7

Two sets of coordinate_surfaces are obtained by revolving the curves of Fig.7 above about
the ¥ axis which is relabeled the z axis. The third set of coordinate surfaces are planes passing
through this axis.

8. Elipsoidal Coordinates (A, u, v).

2 2

A T e SR A A< P B <

—N B =N =N

= + ¥ + i = 1, R TR SR

R N

2 b7

i + 7 + = = 1, v’

2 2 7

g — 1 B — v ¢ —
i =1‘/ (=A@ —N A :g‘/ (v — p) (1)
A2 ¥ @—net-net-n’ o2 ¥V @ P — -

L =l‘/ A=) (u—2)
Yoo ¥ (@@=t —uiet -

9. Bipolar Coordinates (u, v, z). See Fig.8 below.

2 2 :
x%+ (y—acotu) = e®csc’u, {(x—acothe) +4° = a?csch?y, z

1]
™

Fig. 8
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a sinh v _ a sinu -
or X = —————, Y= omeemme—— z =2z
cosh v — cosu coshv — cosu
whete 0S5 u<27, —w<v<®m, —®CzZD
_ 2] —
by =hb, = ——————— h, =1

coshv — cosu

The traces of the coordinate surfaces on the xy plane are shown in F‘i_g.s above. BY re-
volving the curves of Fig.8 about the y axis and relabeling this the z axis a toroidal coordinate
system is obtained,

SOLVED PROBLEMS

1. Describe the coordinate surfaces and cocrdinate curves for (@) cylindrical and (b) spherical co-
ordinates,

{e} The cocrdinate surfaces (or level surfaces) are:
£ =ty cylinders coaxial with the z axis (or z axls if ¢;= 0).
@ = ¢, planes through the z axis.
z = ¢y planes perpendicular to the z axis.

The coordinate ciurves are:
Intersection of 0 = ¢4 and @
Intersection of © = ¢; and =z
Intersection of = ¢, and z

¢o (2 curve) is a straight line.
¢y (qb curve} is a circle {or pointh
cg (O curve) is a straight line.

(b} The coordinate surfaces are:
r= ¢q 8pheres having center at the origin (or orlgin if ¢, = 0,
£ = e, cones having vertex at the origin (lines if ¢y =0 or 77, and the xy plane if ¢, = 77/2).
¢ = ¢ planes through the z axis.

The coordinate curves are:
Intersection of r= ¢y and & = ¢, (b curve) is a circle {or point).

Intersection of r = ¢y and ¢ = cg (9 curve) is a semi-circle (g # 0,
Intersection of & = ¢5 and @ = ¢z (r curve) is a Une.

2. Determine the transformation from cylindrical to rectangular coordinates.

The equations defining the transformation from rectangular to cylindrical coordinates are

(1) x = pcos g, (2 y = 0 sin ¢, ) =z
Squering (I} and (2) and adding, Hecos?P +sin’P) = 7 +42 or
£ =Vx2+y2, since cos?¢ +sin?¢ = 1 and o is positive.
i
Dividing equation (2) by (1), LA M = tangd or ¢ = arctan z .
®  peosc *
Then the required transformation is (&) 0 = Val+ y2, (5) @ = arc tan %, 6z =z.

For points on the z axis (x=0, y=0), notes that ¢ is indeterminate, Such points are called singular
points of the transformation,



142 CURVILINEAR COORDINATES

3. Prove that a cylindrical coordinate system is orthogonal,

The position vector of any point in cylindrical coordinates is

! r = xt +yl +zk = peosPi + osingd i + zk
The tangent vectors to the ©, @ and z curves are given respectively by g-[ ) % and %L where
Ja) z
%: cospi + singd i, %: —psingdt + peosd §, %=k
The unit vectors in these directions are
/D :
e, =8 = YOop L cos@l ks cos Pl + sing j
p | 3/ | VeosZdh + sin? ¢
e, = €y = 31/73(;‘5 = -—psingbi+pcosqu= —sind i + cosdj
| v/ | Vo%sin’d + 0P costd
o - o = or/%z
N
. "Then e,re, = (cosd i +singd fy-(—sinitocospiy = 0
: e,e;, = (cos@i+sing k) = 0 .
e,ce, = (—sindi+ecospp-ky = 0 v

and 80 eq, e, and e; are mutually perpendicular and the cocrdinate system 1g orthogonal.

4. Represent the vector A = zi — 2xJ + vk in cylindrical coordinates. Thus determine Ap-/’dz and 4.

From Problem 3,

(Iy e, = cosdi + sinep | (2) ey = —sgind i + cosd i 3 e, =k

Salving (1) and (2} simultanecusly,

t = cose, — singd ey, i = singe, +cosgey
Then A = zi — 2xj + vk
= z{cos P e,—sinpe) — 2ocosPsind e, tcosP ey + psind e,
= (z cos ¢ — 20 cos P sin c;b)ep - (zsing + 20 costD)eqb + eslng e
and A, = zcosd ~ 20cos P sing, Ay = —zslng — 20 cos’P, 4, = o sino.

3. Prove ;?Eep = qb €4 dic% = - qb e, whete dots denote differentiation with respect to time ¢.
From Problem 3,
e, = cos@i +singj, - ey = —sinb i + cos P j
¢ . . . .
4 Then f‘% e, = — (s Pl + (gosPydi = (~sin PiteosPip = @ ey
a%eqb = n(cosq‘))é')j—(sinqb)q?)j = ~(cos¢i+sinq§j)q§b = utl.‘)ep



CURVILINEAR COORDINATES 143

6. Express the velocity v and acceleration a of a particle in cylindrical coordinates.

In rectangular coordinates the position vector s r= xi ++} +zk and the velocity and acceleration
vectors are
dr . . . dzr e e .
= = = xi++¥]+:zk and a = "2 = xi+¥]j+zk
de Y e y

In cylindrical coordinates, using Problem 4,

r = xi+yit+:zk = (0 cos q'D)(coqu ep—singb e¢)
+ (£ sin ) (sin ¢ e, + cos e *+ ze;
= pe,+ ze,
: g0 de .
| S P, dz _ o .
Then v = u - EBPJF‘OE: +§?e?~’ = ,oep+,or,be¢+ ze,

using Problem 5. Differentiating again,

o
d
a = &I
=

= d%(,éep+,oqf>e¢+£ez)
d¢
,dep e . deg . . s .
= Pt Pe, tpbo—tpdeyr peyt e,
- ﬁq;e¢+,é°ep+pgé(_q;ep) +p<£e¢+,c3q5e¢+‘£ez
= P -pPhe, t (PP T Prey + e,

using Problem 5.

7. Find the square of the element of ate length in eylindrical coordinates and determine the corre-
sponding scale factors. i

First Method. .
x = peosd, y = psing, z=z
dx = —posingdp + cospdo, dy = pceosddd + sind dp, dz = dz

Then  dsf

u

dx?+ dy2+dz2 = (—psind dd + cosp doy + (0 cas ¢ dp + singd doY + (dz)

@py + LAY + (@) = k(@Y + hodd) + hotde)

1]
1]

and kg = hy= 1, k= hy=p, h; =k, =1 are the scale factors.

Second Method. The position vectoris r = pcos® i + osincd i + zk. Then
or o

ar = ZLdp + %

9p o

= {cospi+sind Ndo + (—psindi+ Leosd Hdd + kdz

-a—r-afz

db +
' Oz

= (coschdo — posing dPyi + (singdb dp + peosP dPyi + kdz

Thus ds? = dr-dr = (cos @ dp — o sing ddy + (sing do + poosd dp)y + (day
= ey + Py + @z
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8. Work Problem 7 for (a) spherical and (6) parabolic cylindrical coordinates.
(2) x = rsinf cos, y = rsin@ gingd, 2z = rcos&

—rgin® sing dd + reos 6 cos ¢ d8 + sin J cos b dr

u

Then  dx
dy = rsinf cosdb dd + reos & sinch dF + sin & sin s dr

dz = —rgin® 46 + cos & dr
and (ds)Q = ;dx)g + (aly)2 + (dz)g = (dr)z + rQ(d&‘)Q + r2 sinQE;’(dc;b)?

The scale factors are s =k =1, hy=hg=r, hy=hy=r sin g,

() x = 30f—1®, ¥y = owv, =2
Then dx = uduy — wvdv, dy = wuwdv +vds, dz=4dz
and @syY = @dxY + @Y + @z = @todday + @+oh@dY + dzy
The scale factors ate hy = hy = Va2+ 02, hy= hy= Vit v, hymhy=1. T

v

9. Sketch a volume element in (@) cylindrical and (4} spherical coordinates giving the magnitudes
of ite edges.

(a) The edges of the volume element in cylindrical coordinates (Fig.(a) below) have magnitudes o dd), d0
and dz. This could also be seen from the fact that the edges are given oy

ds, = hydu, = (N(d0Yy= 40, dsy = hydu, = pddb,  ds, = (1)(dr) = dz

using the scale factors obtained from Problem 7.

s g g ;

B < T
o S ) e
» e at by = -

o e (el o L
R o o i g . . ‘ .
;--?g»-s.www& dﬁ' s IlL ¥
. . L L3
g f‘ . @Wwffgé fasados ooy
& wi

@ B i
i - iy

[i 1)
i

¥
e
L)
gmg, A B e
e
R i s
L B, & . g g
PR 7 LSS EET s coga i 4
-
x x
Fig.(z) Volume element in cy¥lindrical coordibates. ig. (5) Yolume element in spherical coordinates,

(b The edges of the volume slement in spherical coordinates (Fig.(b) above) have magnitudes dr, rd2 and
rein & dgb. This could also be seen from the fact that the edges are given by

ds, = h,du, = (13(dry=dr, ds,=h,du,=7r df, ds_ = hdu, = 1 sin & dep

using the scale factors obfained from Problem 8(z).
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Find the volume element dV in (a) cylindrical, (b) spherical and (c) parabolic cylindrical coot-
dinates.

The volume element in orthogonal enrvilinear coordinates o is

dV = }Bihz}ls duidugdug

17 Hgr ¥

{8} In cylindrical coordinates wy= 0, wa=, us=z, b= 1, ko= 0, ha= 1 (see Problem 7). Then
AV = oy dpdp dz = pdpdd dz
This can alsoc be observed directly from Fig. (2) of Problem 8.

(&) In spherical coordinates wuy=r, up=10, ug=, hy=1, ho=r, hy= r sin £ (see Problem 8(s)). Then
4V = (O ein &) dr 4O dp = Zsin O dr 46 4

This can also be observed directly from Fig. (#) of Problem 9.

{¢) In parabolic e¢ylindrical coordinates uy=u, up=v, ug =2z, hy= Vi + 12, ho=Vu2+ 12, hy=1 (See Prob-
lem 8(b}). Then

dV = u?+ A+ dudedr = @2+ 03 du dv dz

Find (&) the scale factors and () the volume element dV in oblate spheroidal coordinates.

@ x = acosh{cosneosd, y = acosh&cosmsingd, =z = asinh & siny
dx

H

—acosh £ cos” sing dp —~ a cosh £sinm cos @ dn + a sinh & cos7 cos ¢ d&
dy = acosh £ cos? cos b dp — acosh £ sin7 singd dn + @ sinh & cos7 sin ¢ d<
dz = asinh & cosm dn + a cosh & siny df | |

Then (ds) = @ + @y + @ = a®(sinh?& + si? ) dEY
+ o2(sinn® £ + sin?m) @)’
+ a2 cosh® & cos27) (dpy
and  hy = b = av’m, ho=h, = a\/m, hs=hy=a cosh & cosy.

by dV = (a/sinh2§+ sin?7) (uv/sinhgf +8in? 1) (e cosh & cos ) df d7y db
= &3(sinh’£ +sin27) cosh & cosm dE dr) dob

Find expressions for the elements of ares in orthogonal curvilinear coordinates.

Referring to Figure 3, p.136, the area elements are given by

dds = | (odugen) x (hoduges)| = hoko|eox | dupdus = hohs dug dug
since | esx eGI = [e1| = 1. Similarly
ddy = | (hyduyer) x thoduges) | = by hy dug dug
ddg = | (hy dug @) X (hydugen) | = hyhy duy dugy
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13. If u.,us, 4, are orthogonal curvilinear coordinates, show that the Jacobian of x, v,z with respect

to Uy, Up, Ug is
Ox F()y Bz
3w, Cu, Ouy
Cmviz _ Btny.s | %y Bz |
o g, U, Uz - L] (u'l’ Lo, Lg) - BMQ BH‘E St - ki h? hﬁ
9x dy  dz
dug Oug Oug

By Problem 38 of Chapter 2, the given determinant equais

?Jx_+?jy_ ’azk) 3xi+3y.+3zk)x(x_+ y'+3zk)
Rt e Y e et B =1+ =]
(dul Oy aui (Bug au? 31.1.2 aug aus aug
Ir or or
= . P = hse,=h,e_ X h
Dus  Fuy | dug 181 7 ps =
= hhshg e cexx ey = hihohs

) ) 3
- g X are coplanar vectors and the curvi-

If the Jacobian equals zero identically then . .
331 auz aus

linear coordinate transformation breaks down, i.e, there is a relation between x,¥,% harving the form
Fix,v.z}= 0., We shall therefore require the Jacobian to be different from zero.

14. Evaluafe ﬂf{xh ¥2+ z2) dx dy dz where V' is a sphere having center at the origin and ra-

¥
dius equal to 2.

HF e R

IR IEEET

FEA g

% %
&R
Y N R W

Fig. (i) . Fig. (b)

The required integral is egual to eight times the integral evaluated over that part of the sphere con-
taired in the first octant (see Fig. (a) above).
Then in rectangnlar coordinates the integral equals

a Va?—x2 f Va2 =g 2—y?

(x2+ y2+ 22) dz dy dx
x=0 y=0 z=0

but the evaluation, although possible, is tedious. It is easier to use spherical coordinates for the eval-
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uation. In changing to spherical coordinates, the integrand x2+%%+ 2% is replaced by its equivalent /2
while the volume element dxdydz is replaced by the volume element r®sin & drd5d (ses Problem
10¢bN. To cover the required region in the first octant, fix & and & (see Fig.(h) above) and integrate from
r=0 to r=gz; then keep ¢> constant and integrate from &=0 to 7/2; finally integrate with respect to
from P=0 to ¢=7/2. Here we have petformed the integration in the order r, £,¢ although any order can
he used. The result is

/2 /2 pa M2 AT2 a0
Sf f f ? (@ sin 0 drdddg) = af f J"r"'sin-e drd6deb

&=0 =0 F=0 &=0 f=0 r=0
T2 /2 e < 72 2
- af f Cosin 6| i6dp - %f f sin € df dp
¢=0  H=0 =0  £=0
n/2 /2 /2
= 8_.“.5_ — COSQ|6— d(_i) = .§£"E. d¢ = i.’%_a_s,
5 =0 5 4

Physically the integral represents the moment of ineriia of the sphere with respect to the origin, i.e. the
polar moment of inertla, if the sphere has unit density.

In general, when transforming multiple integrals from tectangular to orthogonal curvilinear coordi-
nates the volume element dxdydz is replaced by A hyh, du, dusdu, or the equivalent J(u—:f%é:zu—s) du, duydu,

where J is the Jacobian of the transformation from X,¥,% 40 Uy, U5, Uy (Ses Problem 13).

If uy,u,, u, are general coordinates, show that B_r, 9t OF ang Viq, Vu,, Yu, are recipro-
u, Ju, Oug

cal systems of vectors,

We must show that 38:_ . qu = { 1 p=g Shere p and ¢ can have any of the values 1,2,3.

We have
Or or or
dr = ~— d + 2 d + =t d
Quy T w2 By,

Multiply by Vui * . Then

Vui rdr = duy = (Vg i)dul + (Vu1 .o Yduy + (Vul : —a—r—)dua
g Ty B
Lo R Lo
o ’ Vu1 aul =L Vui 8u2 =0 V.-..-.l aus - e

Similarly, upon multiplying by Vu2 * and Vy:a * the remaining relations are proved.

Prove {a—r"a—r“xa—r}{sti'Vungus} - 1.

Ouy,  dus, Oug
From Preblem 15, o ,—Bi ’_B_r and Vui.VuQ,Vua are reciprocal systems of vectars. Then the
aﬂi au2 aua

tequired result follows from Problem 53 {e) of Chapter 2.

The result is eguivalent to a theorem on Jacobians for
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Oy Ouy Ouy
x99y Oz
auQ aug aug _ Ly, Mo g
Vi Ve xVe =\ S| T G
Ous OJup Oug
Y% dy Oz
and s0 J(ux 3;’ 1‘LS) J(u;’!;f’:ﬁ) =1 usiﬁg Problem 13.

17. show that the square of the element of arc length in general cutvilinear coordinates can be ex-

pressed by s - s
ds? = E E g, duydu
pg Py
$=1 g=1
We have
_ o or -
e = = duy + dupg + dug = @yduy + @odu, + g dug
3:.-,1 Bug Bus
Then ds2 = dr-dr =

di' ai duf + di°¢2 dui dHQ + ai.a& 'duiafus
+ @ ) dusdug + Gy Qs du: + &y Oy dus dug
b oy dugdug + Qg Oy dugdup + Gt O dus
2 3 '
= Y Y & dupds, where
pregm 197

e

This is called the fundaemental guadmric form or metric form, The quantities g
coefficients and are symmetric i.e g

In this case gn—h

are called metrie
=0, p# g, then the coordinate system is orthogonal.

2
it Bon = 2. Bgs = i The metrlc form extended to higher dimensional space is of
fundamental importance in the theory of rela.twﬂ;y {(8ee Chapter 8).

GRADIENT, DIVERGENCE AND CURL IN ORTHOGONAL COORDINATES.

18. Derive an expresssion for V& in orthogonal curvilinear cocrdinates

et V& =

fie s+ foe, + fe, where f,f..f, are to be determined.

Since dr = ard1+—a£—d2+——r—du,a
aui aug Buﬁ

hi -7} dui + h2 ey d!.l2 + ks eq dﬂs

we have
Wy dP = VDedr =k fiduy + hofodus + ko fadug
Rut ) 4 = o% duy + QC-I—) dug +. o diig
Bui aug aﬂa
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109P

1 0é 1 3P
Eanating (I) and (2}, = £ ZF f=1 = .
f by Bug

L hi Blzi, 2 - rtlQ aUQ’ fg -

e 9P o 0D ey 0F
Then Vi) = hl aui + h2 auz + hﬂ aua

Thiz indicates the operator equivalence

V = e, ‘_‘B_ €o a 0y a

b By |k Gwp | ho g

which reduces to the usual expression for the operator V in rectangular coordimates.

19. Let uq,u,, uy be orthogonal coordinates. (a) Prove that ]Vup| = ﬁ?;l, p=123.
¢{b) Show that &= E,.

e.

{(¢) Let © =u in Problem 18, Then Vi, = hl and so [Vn1I = |e1 |/‘ai= hi_i , Bince feif = 1. Biml-
1 .

larly by letting & = u, and ug, |Vu2| = h;1 and |Vua| = kg_l .

\Y
(5) By definition B, = ~—— 7 From part (a), this can be written B, ~ 4, V. = e, and the result is proved,
77 V. A )

20. Prove e; = h; kg Vu,x Vi, with similar equations for e, and ey, where wu,,u,, u, are orthogonal
coordinates,

e £, e
From Problem 19, Vi, = h—l, Vu, = é, Vig = ‘713
i ) 3

. eoX & e
Then VI{Q b4 Vua = —2_""_9 = 2 and e = }12 hg VILQ x V‘”‘S .
hQ }33 }‘LE hB

Si]’mlarly e, = hski Vusx VUi “and eq = klhp vﬂ.lx VRQ .

21. Show that in orthogonal coordinates

V- . SR
{a) (4 ey) a&ifrghq 81( 1 fiz g)
- L O g
) Vx (dieyy = 25 o Aihy) ﬁ e a (As )
with similar results for vectors 4.e, and Age,.
(g} From Problem 20,
Vodie) = Vo dihohy VuoxVug)
= Vidihohgy * VupxViuy + 43hphg Ve (Vuyx Vg
= Vid,hh x 22 4 0 = Vidyhohy) ¢ ok
( P I }‘s (A1 hohy) kghs
_je o e 9 a [ Y
= [hi a (dihohg) + S (A hzﬁa) + % Ous (Alhzks)] T
1 B
= b B—M(ﬁhzﬁs) .
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@) Vx (dre)) = Vx (Arhy V)
= V(Alhl)xVul + Aj}lj_VXVH;

= V(Aihi)x:—l + 0
1

e; O

9
Ak —
(Ag A1) hj_hg Bu2

hahy BH'S

22, Express div A = V' A in orthogonal coordinates.

Voa

U]

{4189

e

a9 e, o eg O ]
- & 2. & % Ah
I:hl o, (A1 k) + hy oy {Aqh) + by —auﬁ( thy) | % i

= 1 [-@'— (A1 hohg) + Bi (Apkahe) + a—a— (Aahj.hg)]

hahoha | Ou1 to

using Problem 21(z).

23, FExptess curl A = Vx A in orthogonal coordinates.

VxA

e a Bn

= 22y - e =4k
hahy aus( 151} Bt Bug( 1 h1)

J
& C _
* By ko aui(AQkQ) hgh

eq
hohs

= [—B—Ah iAh +
e BuQ( shg) — —aus(qg)

e [ 2
ST [aui (AQhQ) —

+

hy ko

using Problem 21 (3). This can be written

hihohs | Oug

24. Express VQLJ.'IJ in orthogonal curvilinear coordinates.

. o o
From Problem 18, Vi = <t o, e o,

ki aul hQ BHQ

auz (A'i hs) -

3
= (Azho)
Oug

&
B hy B

e @
hahy Bua

@
5;; {4y "1)]

hoes  hseg

-al'.(:z -é;;

Aoky  Aghs

e O
hg aug.

{Ag hs)

(Ayhe) =

o

V:dyey + Ayeq + Agegy = Vo(dje) + V' (doey + Ve (dgeq)

Ux(diey + dges + Azeq) = Vx(djen + Vx (dges) + Vx (dseg)

P
(ds ﬁq)]
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Ir A=V, then A4, =L % =L E‘f 4y = L XN and by Problem 22,

Vea = VoV - Yy

1 [j_ hokg O . O kahy B 9 (kibp o
hyhohsy

=T Sy auQ ko Ouy Oug by aus)

25. Use the integral definition

(see Problem 19, Chapter 6) to express V+A
in orthogonal eurvilinear coordinates.

Consider the volume element AV (see adja-
cent figure) having edges hy Auy, holus, holug.

Let A=dye; + d,e,+ 43 eg and let n be
the outward drawn unit normal to the surface AS of
A¥. On face fKLP, n=—e,. Then we have ap-
proximately, :

ff A*ndS = (A-n atpoint Py (Area of JKLPY
JELP
[(dres + dopg + Agey) (~e1) ] (hohg Dupug)y

(]

-_— Ai hghs ARQAHS
On face EFGH, the surface integral is

Al 1;1\2}13 Augéua + _a'_ (1‘11 kgkg &w;/.\usj A&i

aul
apart from infinitesimals of order higher than Auy usfus .  Then the net contribution to the surface
integral from these two faces is
c a
= (A hoky ﬁugﬂus} Muy = = (A1 hohs) Nuy Nus zﬁus
4 aﬂi

The contribution from all gix faces of AV is
2 (A3 hohg) + = {(Ag hahg) + 2 (da hrho) | Dy Dup Dug
Juy Dty Bug

Dividing this by the volume hyhoky Juy Nu, Aug and taking the limit as Dauy, Dug, Mug approach zero,
we find

[ ¢ 3
diva = Vo = L[ 22ty hohgy + <y hyhey + =2y k
iv ek [Bui( 1 Aghg) Eamz( : g fig) 3:.-:3( 8 1“'—2):'

Note that the same result would be obtained had we chosen the volume element AV sueh that P is
at its cemter. In this case the calculation would proceed in a manner analogons to that of Problem 21,
Chapter 4.



26. Use the integral definition

(curlAy - n = (VxAy.n =

(see Problem 35, Chapter 6)

in orthogonal curvilinear coordinates,

Let us first caleulate (curlAy+e,. Todo
this consider the surface 5; normal to e, at P, as
shown in the adjoining figure. Denote the boundary

of 5, by ;. Let A= Aseq +
have

1
P

AS—o AS
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fA-dr
&

lim

to express Vx A

i
b R
I
Pl e v ngg R et e e
Dt ruEestneseeael

Ase. + dgeg. We

iA-dr = fA-dr + fA-nTr + fA-dr + fA-dr

¢ oL oM P

The following approximations hold

I

() fA-dr

Py _

Then
fA- dar =
NI

or

(2} fA- dr =
LX

Similarly,
fA sdr =
Py

or

&) fA- dr =
NP

and

{4y ’ fA » dr =
gr

Adding (1), (2), (3), {4) we have

f Adr
C

1

apart from infinitesimals of orde

(A at Py « (hs Duy o)

(Ayeg + dgeg + Ageg) * (hpDugey) = A holug

Aphg Dy + ‘g‘(dzhzﬁug)/—\us

aua
9
- A.Q hQ {_\Hg - ',é'__ (Az kz &HQ) A&a
L
(A at P) . (ha Aus es) = AS :’!3 &us

— Ay ko Dug

An ha D + ai (A3 ha Dug) Duy
g

9 (Ag hg Dag) ay  — 2 (A by Dusy Dug
BHQ ’833

I

Qi du
r higher than Hus Duy,

[ __a'_ (Aaha) _— i (Aghg)] &uQ Auﬂ
3
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Dividing by the area of 5, equal to hohsAuy,fuy and taking the limit as Au, and Aug approach
zero,

3
(curld) v ey, = hlh [E% (Ag hg) - S (Agkz‘;]
o kg o 3

Similarly. by choosing areas S, and S; perpendiculat to ez and ey at P respectively, we find (curlA) - e,
and (curlA) - e;. This leads to the required result

=T} 3 a
curl A = —= | = (Apha) —~ — (AR
ur hohe Iiaugf afty) aus( 2 2):|
L") . d
(A Ry — — ALk
by [aua( 14} auif a 3):’

hies hoes hgeg

ey d k] 1 d d =]
— | = {Aghy) — —— (A4h = =] = —_ —_
hihsy I:aui( 7*2) aug t 1)] hihsohy au.i Bu2 aus

hidy, hods  hgda

The result could also have been derived by choosing P as the center of area 84, the caleulation
would then proceed as in Problem 36, Chapter 6.

27. Express in cylindrical coordinates the quantities (@) VP, ) V'A, () VxA, (d) V5,

For cylindrical coordinates (0,d, z),

B= 0, U=, ug=z ; £1=8,, 6,78y, ey e, ]

and hi=hy=1, hymhy=p, hg=zhy=1
@ VO - }i,—g%el i%:e2+f;%%e3
- %g%ep+é%%+-i—g—?ez
- %@p s ﬁ%f% ; a_ffez
) Vea = E}i@ ['“6%_1 (hoho Ag) + ‘a%g(hahi Ap) + %(hlhgfés)]

i (1)(,;)(13 [ﬁaﬁ ((p’”)“ip) + %(mm%) + %((1)@)43)}

1 [ oAy 3
= = | X p4 = + = (p4
p; [ap(p Dt 3y P z)]

where A = Ape;+;'_i¢ez+rizea, le., 41=4,, Ap=Ag, Ag=A,.

hiey hoes fhgey, e, P&y e,
Vxa = _t |2 9 31 _ 1|3 3 3
@ Vx hibohy | Pu, Pu, Bug 7|3 39 3

1‘311‘{1 hQAQ kgr’ig A,O ‘.OA[ﬁ A
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o4 a4, 94 34,
_ 1 z 0 P a _ %%
) 5[(@‘@:""%’) o ("—a? i ) ® (ep‘p A ’acb) ]
o Vo . 1 [2 (rro2), 3 (ikos), 3 (hh o2
hybohs aui By Cuy Oug he Oug Dt ke Cug
- 1 @) B@ [£9]¢€9] 9P < (& od
(L)L) (1} (13 e o o 3z 1y 9z

o P R
%i(fo—) C e e

28. Express (z) Vx A and (b) V') in spherical coordinates.

Hete uy=r1, ug=(7, ug=; e1=ey, €= g, eg=ey; hy=hy=1, ho=hg=7, ha= ky=rsin é.

hiey hoes hgeg e 78, T sin & ey

Vxa = 1 {8 2 2of _ 1 o 2 @

@ 8 hihohs Cuy  Cup Oua (1Y@ sin8) | o OF dh
1’111‘13‘ kQAQ tha AT rAg r sin & Aqb

1 I . 3

04 [ [ 2 ,
{Er — —,é-;(r sinf?fl‘b)} re, + {—a-r—(nle) - _Eﬁ} r sin® 24

I PR T i (* VA I (S A N (U TAY
hlhghg Bui hl aui aug hp BRQ aus hﬂ Bus
- 1 3 { ngsmb) 3y . 3 [ s Y
(LY sinéy | or (L Or Pel) r o8
, 8 f mmn oy
b \rsin & 9
. 1 im0 (228, 3 (e, 1 Fy
2 sin @ dr dr 0 36 sinf ¢

13 (p84Y, 1 3 (539 1 Py
2 3 (’ ar)+r 535(”‘”‘6 %) T Pen?s g2

29, Write Laplace’s equation in paraboelic cylindrical coordinates,

From Problem 8(5),

Hi= U, Uo= v, Hg=2; hy= Vu2+vg, b= Vu2+v2. ha=1



CURVILINEAR COORDINATES 155

3y 9 (oY) .3 9y
ra _ 1 K3 i g | &Y 9 2, o CW
Then llb R [a‘u Su ¥ o Jy ’ o2 @ dz
L (Fe, B\, T
u2+ 1;2 au.? du? BZQ
and Laplace’s equation is V-1 = 0 or
2 s 2

Y
2 2 -
T 32 T WY o= 0

au
£

30. Express the heat conduction equation = « VU in elliptie cylindrical coordinates.

Here wuy=u, ug=1v, Ua=2z ; hi=h2=al/;inh2u + 8inv, hg=1. Then

Vi L o (2 NI + 2 ap"(.f:*.inhzzs+£-1in2v)EJr
ag(sinhgu + sin'zv) du \ Cu oe \ v Oz Oz

It

2 2 2
e L }OU L, BU s U
a?(sinhz u Tt singv) S o7 dz2
and the heat conduction equation 1s
2 b o
@ 1 su _ dul , duU
ot a®(sinh” » + siney | ®  Sw? D2

SURFACE CURVILINEAR COORDINATES

31. Show that the square of the element of arc length on the surface r = r(x,v) can be written

ds?2 = Edu® + 9F dude + 6 do?
We have dr = or du + 2@ g
Ou v
Then ds? = dr-dr
or Or or Or O dr
= o du 4 2 eI dudy + — o 2L gy?
u ou " du o T S

= Edu? + 9F dudev + G do?

32. Show that the element of surface area of the surface r = r{z,v) is given by

dS = VEG — F? dudv
The element of area is given by
or oy Jr _ O Sr _ or Jr _ Or
s = D ayx Ly 2 M qudy - OF x Oy . (Lr oy oryy
S, "’l VR R B3 5 R, e

The quantity under the square root sign is equai to (see Problem 48, Chapter 2)

dr Or.. Or Or dr or. . or Ir . o
] WS St — e Y L .4 = EG — F d th 1t foll .
B 2 % 3 T G S and the result follows
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MISCELLANEOUS PROBLEMS ON GENERAL COORDINATES.

33. T,et A be 2 given vector defined with respect to two general curvilinear coordinate systems
(1, Uy, ) and (i, 8y, #s). Find the relation between the contravariant components of the vector

in the two coordinate systems.

Suppose the transformation equations from a rectangular (x,y,z) system to the (uy,us,us) and

(&, %, B3) Systems are given by

1k

zl(u'i, lio, uS)

% = % (Uy,ug,ugy, ¥ = Yilua,dplg), %
H {

x = xglly, B, fa), ¥ = Yolls, o lim), 2 = zolly, By, Ug)

Then there existe a transformation directly from the (., us, ug) system to the (i, o, #) system defined by

(2) uy-= bqltiq, Bo, Ba), o = uglily, g, fn), Ug = ﬁsﬁi-ﬁg. iig)

and conversely. From (I},

o= Mg o+ gu, + O

= &y duy + Oodu; + dug
S, D o 1t Gpduz + G
ar - P=1s or .- = - = e = .
dr = —dg, + -—di;, + -——di = d,d8, + O,di. + Osd
%, 1 i, s 3 1 gy 2 Gz g Qg
Then
&) Oy du, + Opduy + Ogdug = Wydiay + Oydmy + Oy dily
L]
From {2}, duy = —H dify + a—i" dif, + Q%:—L dity
aui auQ aus
au Bu au
dut = 24E, + —24di, + =—24d&
2 aul e aﬁz Lo aﬁg 3
aua au Bu
dug = diy, + ——d, + — di
8 aui * BEQ 2 aug °

Substituting into (3) and equating coefficlents of dify, diy,, diiy on both sides, we find

e aui ‘al‘i’. au
a — + £ ~t2 a >3
* 3, * o ® 2m,
— 'aui Bu au
(4) = a + ikt RN a Pt}
@ * Bu2 e Aty S Bug
el Bu au au
@, = @ > + =2 4 =
s R =
Now A can be expressed in the {wo coordinate systems as
{5) A = (@ + Colly + Co@ and A = Cq8 + Cofly + Colly

where Cy, €z, Cs and Cy, C,, &4 are the contravariant compenents of A in the two systems. Substituting

(4) into (5),

Ci@y + Colly + Cally = 51&1 + G, + Cu@,

w Ouy — Oy - Ouy Bu,  — — Ouy Doy
= (Ci"—gﬁ_l"'cgg— Caa_)ai + (Cl'a 0275— C.a_')az + (Cia

— Qug
+ Gy

5;

Oug
+Csa Yoy
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Then

_ 3 — d
¢, = £ §—n1 + Gon + Con
iy o, Oz
— Bw, = dup = Ou
6 G = Oi=—= + Co=== + O5=—
(3] . 2 1 ¥, 2 o, 3 "
- 81&3 = aug BHS
. = =— + C(o=—= + (g=—
° ! B, ® o, ® 6,
or in shorter notation
— Cu _ Ou v Ou
(?) C? = Cj_-—-——;? + CQ—:b + Cg-,\—b P= 1,2.3
iq aﬁg g
and in even shorter notation
< Ou
@) ¢, = L G2 p=1,23
q=1 Buq
Similarly, by interchanging the coordinates we see that
— auﬁ
9 T, - E -1,2,3
(%) ] =1 q au P

The above results lead us to adopt the following definition. If three quantities Cq, G, & of a co-
ordinate system (w1,uzus) are related to three other quantities €y, &, Ty of another coordinate system
(U1, o, i) Dy the transformation equations (), (7), (8) or (9), then the quantities are called components of
a contravariant vecfor OF & coniravariant tensor of the first rank,

Work Problem 33 for the covariant components of A.

Write the covariamt components of A in the systems (uy, up,ug) and (&, #o iy} &S ¢y, cg, €4 and
&1, T €3 respectively. Then

(1) A = Cq Vui + Cy VuQ + Cn Vu3 = Ei Vﬁi + E‘Q VEQ + 55 VES

Now since @y = Bp(ug,upus) With p= 1,2,3,

Py Ty Ou | O Sw O D
En s 9 Omp O | us on
@ Fp o T Pu U dw Wy he
dy Ouy Oy On, Oy Buy Ay
B T Pu | Tl O O
S du; dz  dup 9z Dug O

Also,

)
{(hH C1Vu1+ CQVu2+c3Vu3 = 'fH%%“'C?_éEf"' caaalf)i

Auy P I d L)
+(¢'1-a +Czay2+fsau3)j (Cié‘i'*’c'za_tz*'cs‘%g)k

and
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on % o
@y 7 Va + 5, Vi, + 5, Vi = (EIB—“:+EQ—;:2+ES-_(—;;—3)1

¥  _ %% ity 9%y - I , . Oig

+(E—u+c—-—+c—-—)j+(51—ﬂ+c—+c9"-—)l(
Y Py Ty A %z

Equating coefficients of i,i,k in (3) and (4},

7 9 Su _ ou _ o _ du

‘1 311 *oe alf teagt = cl'a'f v Rt %5

us ug Bug _ dE, | . O,  _ O

—_— = 4 . = _— =+ =

©) % Tt ey - V- W
3 a e _ om _ %u . o

gy ten tagl T Bt Ryt "5

u
Substituting equations (2) with p = 1,2,3 in any of the equations (5) and equating coefficlents of =2 '

dup Swg Ouy Owy Juy Ouy CJup Jug ’

T % oy By oy Az 0z o

on each side, we find

- Oy . 5y _ Ofg
= —= ¢ o= + TgT—
1 ‘1 aui z aui 3 81&1
_ Oy _ O, _ Oty
= — + —= o+ —=
@ 2 B | PO o,
_ Ju, - _ Oy
= — + —= 4+ g
e s 2 Oug ® Bua
which can be writien
OF. % o,
(7) ey = Eia_ul + 'c‘zra—“ﬁ + 33555—' p=1,23
“p “b U
ar
}3: i
= q
&) ¢ = G, = p=1.2,3
ﬁ’ q=1 q Bub
Similarly, we can show thaf a
, . . T Aug i
)] £y = G % p=123
| g=t " T

The above resnlts lead us to adopt the following definition. If three quantities e,, €5, cg of a co-
ordinate system (uq,u, zg) 2re related to three other quantities &, &, %z of another coordinate system
(i1, Bo. ig) by the transformation equations (6), (7}, (8) or (9), then the quantities are called componenis of
a covaeriant vector Or & covariant tensor of the first rank.

In generalizing the concepts in this Problem and in Problem 33 to higher dimensional spaces, and
in generalizing the concept of vector, we are led to teasor anslysis which we treat in Chapter 8. In the
process of generalization it is convenient to nse a concise notation in order to express fundamental ideas
in compact form. It should be remembered, however, that despite the notation used, the basle ideas treat-
ed in Chapter § are intimately connected with those treated in this chapter.
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35. (@) Prove that in general coordinates (u, us, ug),

By 51 Bie
= = ( . _2_3}'_ i}g
g 831 85 By ) Juy  Ouy,  Jug
far Ban  Bas

where Epq BT the coefficients of duﬁ dr.;q in ds® (Problem 17).

{b) Show that the volume element in general coordinates is \/E iy duo dugy .

(z) From Problem 17,

o or dx  Ox Jy Oy 9z Oz
{1 o= Byl = — T = — —— + = — r.g=1,2,3
) g@q P q B% auq aup auq aup auq aup auq
Then, using the following theorem on multiplication of determinants,
ty oo ‘13! 4, By G @Ayt ag Ay +agds 6y By + oy Byt agBs oy Cy + 0,05+ ag Oy
5y by by Az B, €y = by Ag + bodp+ by Ay by By + by By + by By by €y + by Cp+ Bg Oy
cq g eg As By C4 crditepdotegds cg B+ ep Byt cg By ey Oy + oo G+ cgCy
we have
Ox —r}y z |?
aui E‘ul aui
I SV S N A
aui auz aas aug aug Bug
Ox By Oz
Bus Oug Oug
O O O:|l3 Bx B e & &
Buy Su, Onug || Oum Ou, Oug 1 f12 G
2 0¥ u||d Y
= e —— —— . - g
Bu2 aug Bug 81:,1 aug BHQ 21 g22 gm
O O 9z ||Bz Bz 3 6 g
Cug Oug Oug | | Ouy Jup Oug b Ba 8o
{b) The volume element is given by
Ar S dr 9 ar or
dV = [ {—dug) * ('—-du)x(—'—du) == v =5 % = duy dus d
Bu1 aug ? Bu 8 Jug aug aug 18 Bs

Vg duy dusdus by part fe).

Note that VE is the absolufe value of the Jacobian of x,¥,r with respect to Uy, Ug Us (See Prob.13).
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SUPPLEMENTARY PROBLEMS

Answers to the Supplementary Problems are given at the end of this Chapter.

36. Describe and sketch the coordinate surfaces and coordinate curves for () elliptic cylindrical, (&) bipolar,
and {c) parabolic eylindrical coordinates.

37. Determine the transformation from (2} spherical to rectangular coordinates, (b) spherical to cylindrical
coordinates. '

38. Express each of the following loel in spherieal coordinates:
(a} the sphere x?+3?+2%2 = 9 (c) the paraboloid =z = x2 +47

the plane = .
(b) the cone 2% = 37 +y% {d) the plane z=10 ) P yEx

39, If p,qﬁ,z are cylindrical coordinates, describe sach of the following loel and write the equation of each
locus in rectangular coordinates: (@) 0=4, z=0; (b)o=4: (¢} b =m2; @)D =7/3, z=1.

40. If u, v,z are elliptic cylindrical coordinates where a = 4, describe each of the following loel and write the
equation of each locus in rectangular coordinates:
@ v=7/4; (Du=0,2z=0; {(Hu=In3, z=2; (dyv=0, z=0.

41. If mu,v,z are parabolic cylindrical coordinates, graph the curves of regions described by each of the fol-
lowing: (@yu=2, z=0; (Byv=1, 2=2; (¢}18ul2 25vss, 2=0; () l<cu<?, 2<v<y3, 220,

42. (a) F'ind the unit vectors e,, eg and ey of a spherical coordinate system in terms of i, and k.
(b} Solve for i,jand k in terms of e,, €5 and es.

43. Represent the vector A = 2y1—zj +3xk In sphetical coordinates and determine 4,, Ay and Ag .

44, Prove that a spherical coordinate system is orthoeonal.

45. Prove that (z) parabolie cylindrical, (b) elliptic cylindrical, and (¢) oblate spheroidal coordinafe Systems
are orthogonal.

. o - + si F o = — ) | o = —=ai ) —_ ; :
46. Prove e_ 939 sinfcde,, e, 98r+cosédae¢, ey smﬁqbe‘r cosf‘q“eg.

4%7. Express the velocity v and acceleration a of a particle in spherical coordinates,

48. Find the square of the element of arc length and the corresponding scale factors in () paraboloidsal,
tb) elliptic cylindrical, and (c¢) oblate sphetoidal coordinates.

49. Find the volume element €V in (e) paraboloidal, (b) elliptic eylindrieal, and (¢) bipolar coordinates.
50. Find () the scale factors and (b) the volume element dV far prolate spheroidal coordinates.
51. Derive expressions for the scale factors in (a) ellipsoidal and (5) bipolar coordinates.

52. Find the elements of ares of a volume element in (a) cylindrical, (b) spherical, and () paraboloidal co-
ordinates.

53. Prove that & necegsary and sufficient condition that a curvilinear coordinate system be orthogonal is that
8pg= 0 for p#g. :



55.

56.

57.

58.

38,

66,

61

62.
63.
64.
63.

66.

67

*
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Find the Jacobhian I(u——x-fuy:'%) for (2) cylindrical, (b) spherical, (c) parabolic cylindrical, (d) elliptic
1rlig, Bg

cylindrical, and (e) prolate spheroidal coordinates.

Evaluate fff Vx® +y% dx dydz, where V is the region bounded by z = 2 +y2 and z = 8—(x2 + %),

Hint: Use cylindrical coordinates,

Find the volume of the smaller of the two regions bounded by the sphere %2 +y2+ 2% = 1§ and the cone
2= %2+ y2.

Use spherical coordinates to find the volume of the smaller of the two regions bounded by & sphere of
radins @ and a plane intersecting the sphere at a distance k from its center.

(o) Describe the coordinate surfaces and coordinate curves for the system

xQ—yQ = 2uy COSMs, XY = g SiNus, Z = Hg
(b)Y 8how that the system iz orthogonpal. (e¢) Determine J(i’{—) for the system. (d) Show that u4 and
e, Yo, g

up are related to the cylindrical coordinates o and ¢ and determine the relationship,

Find the moment of inertia of the region bounded by »® —42 = 2, »® —¥2 = 4, xy=1, xy=2, z=1 and
z=3 with respeet to the z axis if the density is constant and equal to x. Hint: Let a2 —y% = 2u, xy=1v,

Find _aE. » E_r_ . jl Vul, sz, Vua in {e} cylindrical, (b) spherical, and (¢) parabolic cylindrical co-
aul aug Bu:_;,

ordinates, Show that e =E,, es= E,, eg= Eg for these systems,
Given the coordinate transformation =z =%y, Juo=x2+y2, u,=z. (a) Bhow thet the coordinate system is
not orthogonal, () Find J{—22" }. () Find ds?.
Uqybio, g
Pind V‘i’, divA and curlA in parabolic eylindrical coordinates.

Express (a)Vl,b and (b)V' A In spherical coordinates,

Find Vagb in oblate spheroidal coordinates,

Fe  Fo
Wtite the equation + —— = & in elliptic cylindrical coordinates.
WP P
. v _ 1 dH .
Express Mazwell’s equnation X E = — P B_ in prolate spheroidal coordinates.
H

2
=
Express Schroedinger’s equation of quantum mechanics V n,b + 8;;”3 (F — Vi{x,y,20 = 0 in parabolic

~ eylindrical coordinates where m, b and E are constants.

68

69.

70.

71.

Write Laplace"s equation in paraboloidal coordinates.

Express the heat equation ? = K V2 U in spherical coordinates if I/ is independent of (s) b, (b) ¢ and
t

8, (eyrandt, @)P, 0 and ¢,
F’_ind the element of arc length on a sphere of radius =,

Prove that in any orthogonal curvilinear coordinate system, div curlA=0 and curl grad =0,
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2.

3.

TE.

3.

6.

8.

8.

80.
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Prove that the surface area of a given region R of the swface r = r(z,v) is ffvEG—F? dudv, TUse
P

this to determine the surface area of a sphere.

Prove that a vector of length p which is everywhere normal to the surface r = r{s,v) Is given by

A + p(ﬁ x 2 /VEG—F"‘
uw  Ov

u
-

(@) Describe the plane transformation x = x(u,e), y=y{s,v).
() Under what conditions will the u,v coordinate lines be orthogonal?

et {x,v) be coordinates of a point P in a rectangular xy plane and (u,v) the coordinates of a point ¢ in
a rectangular uv plane. If % = x(u,v) and y = y(s,v) we say that there is a corresponderce or mapping
between points P and Q.

(&} If x = 2u +v and y = u— 2, show that the lines in the xy plane correspond to lines in the zv plane.
¢b) What does the sguare bounded by x=0,x=5, ¥= 0 and y =5 correspond to in the uv plane?

{ey Compute the Jacobian ](g%) and show that this is related to the ratios of the areas of the square

and its image in the wv plane.

% = 3° —2), y=un determine the image (or images) in the uv plane of a square bounded by x =0,
=1, ¥= 6§, ¥y=1 in the xy plane.

Show that under suitable conditions on F and &,

m o -4 t
f f eTIXTYY Fix) Giyydudy = f ™St {f Fu) G(t—u) du}dr
o o a

o]

Hint: Use the transformation x +y = ¢, x = ¢ from the x» plane to the vt plane. 'The result is important in
the theory of Laplace transforms,

(@YTIf % = Bug + Up~1HUg, ¥ = 4 + 2y + Dby, £ = Zug — up— ky, find the volumes of the cube hounded by
x=0, x=15, y=0, y=10, 7= 0 and z =35, and the image of this cube in the wquous rectangular coor-
dinate systeln.

{b) Relate the ratio of these volumes to the Jacobian of the transformation.

Let (x,v,z) and (uq, s, u4) be respectively the rectangular and curvilinear coordinates of a point.
(8)If % = Buq + tp~ug, ¥ = g + Jus + 28z, 2 = Bug — U — Uy, 1S the system uquouyorthogonal?
(5) Find ds” and g for the system.
{(¢) What is the relation between this and the precedmg problem?

oix,¥,2)

E; 2
If x=ul+% y=uitug, 2=u, —ug find () g and (b) the Jacobian J = ———"—— . Verlfy that y = .
ou, uo, ug)

ANSWERS TO SUPPLEMENTARY PROBLEMS.

36.

faYu=ec, and v=e, are elliptic and hypetbolic cylinders respectively, having z axis as common axis.
z = ¢g are planes, BSee Fig. 7, page 139.

(6yu=1¢; and v=c, are circular cylinders whose intersections with the xy plane are circles with centers
on the y and x axes respectively and intersecting at right angles. The cylinders #=c, all pass
through the points (—¢,0,0) and (2,0,0). z=cy ate planes. See Fig, B, page 140.

{eyu=rcq; and v=¢y are parabolic cylinders whose iraces on the xy plane are infersecting mutually per-
pendicular coaxial parabolas with vertices on the x axis but on opposite sides of the origin, z=r¢g5
are planes, See Fig. 8, page 133.

The coordinate curves are the intersections of the coordinate surfaces.
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- 2442 .
37, (@) r = Va?+y®+2®, & = arctan Y , = are tan%

4

@) r=Vvp2+z?, 5=a:ctan?p, d=

38, (@) r=3, (&) F=7/6, (c) rsin?? =cos &, (d) H=m/2,
{e} the plane y=x is made up of the two half planes ¢ = 77/4 and ¢ = 57/,

38. (a) Circle in the xy plane x“+y* =16, z=0. (b) Cylinder x%+y? =16 whose axis coincides with z axis.
(¢} The yz plane where ¥y 2 0. (d) The straight line »= V'3 x, =1 where x20, y20.

40. (z) Hyperbolic cylinder x?—y?=8. (b) The line Joining points (—4,0,0) and (4,0,0), L.e. x=¢, ¥=0, z=0
= a

where —4$2< 4. (o) Ellipse :—5 + % =1, z=2. (@) The portion of the x axis defined by x4, y =0,

e
z =0,

41. (o) Parabola y2 = —8(x—2), 2=0. (b) Parabola »% = 2¢+1, z=2, (c)Region in xzy plane bounded by

parabolas ¥y = —2(x—1/2), 42 = —8(x—2), ¥ = 8(x+2) and ¥2 = {8{x+9/2) including the boundary.
(d) Same as (e) but excluding the boundary.

42. (Y e, = sinFcosp i + sinfsind j + cosf k
ey = cosCcos i + cosPsing § — sinfk
ey = —sing i + cosgh j
(i = sinfcespe, + cosH cosp e, — sind €
i = sinfsing e, + cos8 sing eg + cosg ey
k = cosfle, - sinfe,
43. A = A,e,  + Age; + A(beqb where
4, = >sin?f singd cosd -~ rsiné cos & singg + 3rsin8 cos & cos P
Ag = 2rsinf cos G sinch cosd — reos2l singd — 3rsin®f cos
Ay = =—2rsinf sin®¢ — rcos @ cosp
4. v = woe + voe, + LN where v?_=r:, vg=r£9, vd):rsingci)
L0 -
a = ae. + agey + gye, Where ar-—*r—rﬁg—rslnzﬁqb \
agz;l— &d?(r?@)—'r gin & cos & ¢,
1 d

{r® sin? A f)"b)

%= rsin & dt

48. (a) ds® = E+v?) (@duP+dvd) + P2 dP? k= B, = VuZ+?, kq{,: Lt

i v
() ds? = o%(sinh®u + sin?v) (@duZ+dv?) + da2, by, = By = avsinh®s + sinv, A, =1
(¢) ds? = a®(sint2& + sin®n) (@ +d77) + o2 cosh?E cos?T) dgb?,

he = by = m/ﬁhﬂg + g8in®7y, hg = acosh& cos 7

a’ dudvdz

48. (@) wo @+ dudvd®, () o®(sinhZs + sin2u) dudvdz,  (c)
{cosh v — cosu)®

50. (a) hg = k= aVsinb®S + sin’m,  hy= e sinh £ sinm
(b) a°(sinh®¢€ + sin®7) sinh & sin 1 d£ dm dob
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52, (2) pdodp, pdpdz, dpdz
(by rsin & drdp, 2sinf dbdd, rdrdf
(¢) @2 +vTydudv, wvVulte? dudd, wvuli’ dv dp

54, (@) 0,

2587
i5

60, (&) —

by =—

(e) =

61. (&)

62. V&

div A

curl A

56. M 57. J(20%~ 3a%h 4 49) 58. (¢) 35 (@) vy = 302 ug = 20
) xi+ .
cosd i + s=ing j, Vo = #rd = cosP i + singj
x2+y2
. . . —singd i+ cosg i
—pshhei + pcoos |, Vi = n‘lp co.d)]
k, V: =k

sinf cash i + sinf sind i + cos Tk

recos @ coschi + reos O singpj — rsint k

—rsinBsinggi + reinf cos P

xiiydrzk _ g coschi + sin & singj + cos G K

V2492422
_omzityzj— (2HyK cos B cosgb i +cos & sinhj—sinf k
) (x2+y'2+29)1/;§+_y2 B T .
 —yi+xj _ —singi + cosd]
B x% + 42 ) r sin &
ui + vj, %=-—vi+uj, %=k

xQ'

_1
2

ui + vj —vi + uj
LU Al R BT Vz = &k
u? + 2 2 + p?

by 2sin 8, (¢) ¥2+v2, (@) o?(sinh?y + sin?w), (e) a(sinh?£ + sin®7) sinh £ sin 7

uQ(du.12+du.22) — 2wy duqdus

) ds2 = G (dug +dug) — dxy dudus w? -
(xQ__yQ)Q
L3, , 1232, , 22

LY . 8
-'H. —
V24 p2 Ju \/;2+92 Bv Y 2 ¢
d

! [%‘ (/R a,) + aﬁ(\/mau)] .

u? + o 1
o

+ .
a4 3
L[ 3 ()}

b

L B e ‘94 —
+ {a( u2+v2Au) - _Ef} 1/1:,2+029.U

2ul—ul)

+ {%(_W%) -2 (WAR)} ez]

+dug

2



63,

64.

65,

66,

LN

68,

69.

70,

4.

8.

.

80.
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i

R

.

e

-—-—(SE)} Re]
7 g @

oy A ;oY
R e I Ty vl
. 3d
by Voa = L 22 L 0 einfdgy + —1o 2
GYTTA = R A T aE s SN0 T Tt o
Vi - 1 3 Pl
v o” cosh & (sinh?$ + sin?7) aéfcoshg, 3’)
1 3 Sy
2 2 (Cosm =) + — ) 3 2
e? cos 7)(sinh% + sin?7) 37] on a? cosh2& cos?y o
£, D . o
57 + Sl a?(sinh2u + sinZe) P
1 2 E
« — (RE — —(SE 8
aRS? [{Bn( @) Bc;b( ﬂ)} K3
3
i _1%9 _1%6 _1%9
£ 3 £ ¢ % 7 c g @

where R = sinh & sin7 and § = Vsinh?Z + sin?7 .,

a2 2 24
1 [a¢+3¢:| L oY Efﬁ(g_wm,u,z))ka =

22+ | 9u® Bo? J2? K2
2
qu—u(u%}j—,) +_u2v%(v%‘f—) +  (w?+u?) —gq;f = ¢

oy OU 13 20U 19
35 K[ro'ar“ yr “”’“‘639]

or Zsinf of
o L - K[r—lz

5 (rﬂz:@ﬂ)] (e) sind “-"—(51118 BU i
t

36 ==
ds? = o2 [d9% + sin?8 dp?]

3 3% ¥y By
by — — - - =
® 5 2 T B B 0

fa) 750, 75; (b) Jacobian = 10

o,

where

d di
dy — (r2 —
()dr( afr)

g = 100

= 2 2 2 _
{e) No. (b) ds° = 14du1 + Gduz + Gdus + 6duldu2 Sduidus + Bdquua,

(0315:131&31&:- (b)f=4u1u3

165

uf(u’vlz) = V(x’y,z)'



Chapter 8

PHYSICAL LAWS must be independent of any particular coordinate systems used in describing them

mathematically, if they are to be valid. A study of the consequences of this te-
quirement leads to tensor analysis, of great use in general relativity theory, differential geometry,
mechanics, elasticity, hydrodynamics, electromagnetic theory and numerous other fields of science
and engineering.

SPACES OF N DIMENSIONS. In three dimensional space a point is a set of three numbers, called

coordinates, determined by specifying a particular coordinate system
or frame of reference. For example (x,y,2), (0, ¢,2), {1, 5’,gb) are coordinates of a point in trectan-
gular, cylindrical and spherical coordinate systems re;p_erctively. A point in N dimensional space is,
by analogy, a set of N numbers denoted by (x4 x2 ...,x"'r) where 1, 2,...,N are taken not as expo-
nemnts but a8 superseripts, a policy which will prove useful, '

The fact that we cannot visualize points in spaces of dimension higher than three has of course
nothing whatsoever to do with their existence,

COORDINATE TRANSFORMATIONS. Let (xi, %2, ...,x”) and (7,32, ...,%) be coordinates of & point
in two different frames of reference, Suppose there exisis N
independent relations between the cocrdinates of the two systems having the form

% = Zhal s L, xy)
2 = B2eheA )
(H oo :

. » . .

= 'EJ’:(xi,xg, ...,xﬂ)
which we can indicate briefly by
(2) = zRal s L, ah) k=1,2,....N
where it is supposed that the functions involved are single—valued, continuous, and have continucus
derivatives, Then conversely to each set of coordinates (El,EQ,...,E‘V) there will correspond a

unique set (z*, 2% ...,%%) given by

H xR = R 2L EN E=1,2..N

The relations (2) or (3) define o tronsformatior of coordinatesiirom one frame of reference to another,

166
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THE SUMMATION CONVENTION. In writing an expression such as aixi + ang‘ + ...+ a},x’( we Can
¥
use the short notation a, xJ An even shorter notation is sim-
] 1]
ply to write it as a; x\? where we adopt the convention that whenever an Index (subscript or super-
script) is repeated in a given term we are to sum over that index from 1 to N unless otherwise spec-
ified. This is called the summation convention. Clearly, instead of using the index j we could have
used another letier, say p, and the sum could be written « <P . Any index which is repeated in a giv-

en term, so that the summation convention applies, is called a dummy index or umbral index.

An index oceurring only once in a given term is called a free index and can stand for any of the
numbers 1, 2,...,¥ such as & in equation (2) or (3), each of which represents N equations.

CONTRAVARIANT AND COVARIANT VECTORS. If ¥ qué,ntities Ai, AQ, vens A}'r in a coordinate sys-
tem (x, &7, ..., x¥) are related to N other quantities
a7, ...,ZN in another coordinate system (%%, %% ...,%%) by the transformation equations

?

;g

which by the conventions adopted can simply be written as

p=12..,%N

m(&l

Y
A= 4

they are called components of a contravariant vector or contravariant tensor of the first rank or first
":'ff'fer‘ To provide motivation for this and later transformations, see Problems 33 and 34 of Chapter?7.

If N quantities 44,4,,...,4; in a coordinate system (x*, 2, ...,x%) are related to N other

quantities 41,A 21 A_,‘, in another coordinate system (%%, %7, ...,E*"r) by the {ransformation equations
7 q
g = et A, =
p 3?9 P=1L2...¥N
g=1
ol
T -
Ay = Sople

they ate called components of a coveriant vector oI covariant tensor of the first rank or first order.

Note that a superseript is used to indicate contravariant components whersas a subseript is
used to indicate covariant components; an exception occurs in the notation for coordinates.

Instead of speaking of g tensor whose components are 4P or .-415 we shall often refer simply to
the tensor A? or Ag;- No confusion should arise from this,

CONTRAVARIANT, COVARIANT AND MIXED TENSORS. If ¥2 quantities 47 in & coordinate system
ar (x% %2 ...,x%) are related to N2 other quan-
tities 4" in another coordinate system (x%, %2, ..., E*"') by the transformation equations

¥ ¥
=F 327 g5
77 -y y & &4 por= 1,2, N

or
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_?’yr =P =T gs
4 - Lqis 4

by the adopted conventions, they are called contravariant components of a tensor of the second rank
or rank two. '
2 " . .
The N quantities 4., are called covariant components of a tensor of the second rank if

1. = oxfox’
Aor = appagr/es

Similarly the N’ quantities Ag are called eomponents of a mixed tensor of the second rank if

4% P osd [
RA e

THE KRONECKER DELTA, written §,, is defined by

J { 0 if j£E&
bk =
1 if j=k%
As its notation indicates, it is a mixed tensor of the second rank.
5%
TENSORS OF RANK GREATER TBAN TWO are easily defined., For example, Ai:l are the compo-

nents of & mized tensor of rank b, contravariant of order
3 and covariant of order 2, if they transform according to the relations

yidhi 3x? 3% 02" 34" Bat
v 3xY B Oxt xR BxT RI

SCALARS OR INVARIANTS. Suppose ¢ is a function of the coordinates x% and let 5 denote the
fenctional value under a fransformation to a new set of coordinates Ek.

Then ¢ is called & scalor or invariant with respect to the coordinate transformation if ¢ = E; A
scalar or invariant is also called a tensor of rank zero.

TENSOR FIELDS. If o each point of a region in & dimensional space there corresponds a definite

tensor, we say that a rensor field has been defined. This is a vector field or
a scalar field according as the tensor is of rank one or zero. It should be noted that a tensor or
tensor field Is not just the set of its components in one speecial cocrdinate system but all the possi-
ble sets under any transformation of coordinates.

SYMMETRIC AND SKEW-SYMMETRIC TENSORS. A tensor is called symmetric with respect to two

. contravariant or fwe covariant indices if its com-
ponents remain unaltered upon interchange of the indices. Thus if Amfr = A.(?:r the tensor is sym-
mettic in m and p, If a tensor is symmetiric with respect to any two contravariant and any twoe co-
variant indices, it is called symmetric. '

A tengor is called skew-symmetrie with respect to two controvariont or two covarlant indices

if its components change sign upon interchange of the indices, Thus if Ag‘f@ —Ag;” the tensor ig
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skew-symmetric in m and p. If a tensor is skew-symmetric with respect to any two contravariant and
any two covariant indices it is called skew-symmetric.

FUNDAMENTAL OPERATIONS WITH TENSORS.

Addition. The sum of twe or more tensors of the same rank and type (i.e. same number of contra-
variant indices and same number of covariant indices) is also a tensor of the same rank and type.
Thus if A;;‘ﬁ and Bg‘b are tensors, then C’”“?b = AM + BM’ is also a tensor. Addition of tensors
is commutative and associative.

Subiraction. The difference of two tensors of the same rank and type is also a tensor of the same
rank and type, Thus if A:_?i’ and qu?j ate tensors, then D;‘ﬁ = Am‘?b’ B ™ s also a tensot,

Outer Multiplication. The product of two tensors is a tensor whose rank is the sum of the ranks
of the given tensors., This product which involves ordinary multiplication of the components of
the tensor is called the omter produet. For example, AW BT = Cgm is the outer product of 4”
and B;" . However, noie that not every tensor can be Mltten as a produet of two tensors of lower
rank. For this reason divisjon of tensors is not always possible.

. Centraction. If one contravariant and one covariant index of a tensor are set equal, the result in-

dicates that a summation over the equal indices is to be taken according to the summation con-
vention. This resulting sum is a tensor of rank two less than thaf of the original tensor. The
process is called contraction. For example, in the tensor of rank 5, A’ﬂ;” ., set r=s {o obtain

A;i,r —B "% 2 tensor of rank 3. Further, by setting p=g we obtain Bﬁﬁ = Cm a tensor of rank 1.

Inner Multiplication. By the process of outer multiplication of two tensors followed by a conttac-
tion, we obtain a new tensor called an inner preduct of the given tensors., The process is called
inner multiplication. For example, given the tensors A™ and Br the outer product is AP B;;.
Letting ¢=r, we obtain the inmner product Amfb Letting g=r and p =s, another inner product
Ai‘*f" B'r is cobtained. Inner and outer multlpllcatmn of tenscors is commutative and associative,

. Quot.lent Law. Suppose it is not known whether & quantity X is a tensor or not. If an inner prod-

uct of X with an arbitrary tensor is itself a tensor, then X is also a tensor. This is called the

guotient law,

MATRICES. A matrix of order m by n is an array of quantities Gpr called elements, arranged inm

oL

rows and » ¢olumns and generally denoted by

a1 Q1o .., Oip Q31 U1o ... 4y
o1 Gsn .ev Oy o1 Gpo ... Bop
.. . or .. .
Opy Gz ... Ogn Opa Ogo ... gy

in abbreviated form by (ay) or [% 1, p=1,...m; g=1,..,n. If m=n the matrix is a square

matriz of ordet m by m or simply m; if m=1 it is a row matrix of row vector; if n=1 it is a column
matrix of column vector.

The diagonal of a sguare matrix containing the elements a4, a., ... »&yq 18 called the princi-

pal of main diegonal, A square matrix whose elements are equal to one in the principal diasonal and
zero elsewhere is called a unir mairix and is denoted by I. A null motrix, dencted by O, is a matrix
all of whose elements are zero.
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MATRIX ALGEBRA. If 4 =(apq) and B= (b?q) are mairices having the szme order (mbyn) then

1. A=B if and only if ay, = bﬁq.

—— it
2. The sum § and difference [} are the matrices defined by
S = A+R = (apq-k :59'(-1.), D =A-B = (apq— b?_l;q)

3. The praduct P=AB is defined only when the number n of columns in 4 equals the number of rows
in B and is then given by

P = AB = (apg)(bpg) = (aprbry
n
where By brg = E %,,.b,,.q by the summation convention. Mafrices whose product is defined
=1

are called conformahle.

In general, multiplication of matrices is not commutative, 1.e. AB#BA. However the asso-
ciative law for muitiplication of matrices holds, i.e._A(BC) = (A1B)C_provided the matrices are
conformable. Also the distributive laws hold, i.e. A(B+C) = AB + AC, (A+B)C = AC +RC.

- : S
4. The determinant of a square matrix 4 =(a,) is denoted by |41, det 4, | %qi or det(ay).
If P=AR then |P|=|4] IR,

5. The inverse of a square matrix 4 is a matrix 47! such that_44 7" = ], where [ is the unit matrix,
A necessary and sufficient condifion that 471 exist is that detd # 0. If detd =0, 4 is called
Singufar.

6. The product of a scalar A by a matrix 4 = (%a)' denoted by A4, is the matrix (}‘“;'m) whele each
element of 4 is multiplied by A. . '

7. The transpose of a matrix 4 is a matrix AT which is formed from 4 by interchanging its rows and
columng., Thus if 4= I then A= (agp). The transpose of A is also denoted by E

THE LINE ELEMENT AND METRIC TENSOR. In tectangular cootdinates (x,y,z) the differential g
arc length ds is obtained from m

Bg trasnsforming to general curvilinear conordinates (see Problem 147, Chapter 7) this becomes ds” =
Z Z Epq dugdu,. Such spaces are called three dimensional Fuclidean spaces.
p=1 g=1

A generalization to N dimensional space with coordinates (x!, %, ..., xF) is immediate, We de-
fine the line element de In this space to be given by the quadratic form, called the metric form or
metric,

or, using the summation convention,

In the special case where there exists a transformation of coordinates from x' to T* such that
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the metric form is transformed into (dx%? + (@x2% + ... + (dxY* or dx*dx”, then the space is call-
ed N dimensional Euclidean space. 1In the general case, however, the space is called Riemannian.

The quentities g,. are the components of a covariant tensor of rank two called the metric
fale | .
tensor OF funa’amenml tensor. We can and always will choose this tensor to be symmettic (See Prob- o~
lem 293.

CONJUGATE OR RECIPROCAL TENSORS.[ Let g = | &5 '| | denote the determinant with elements

,g;b'a and Suppose g#0. Define g”7 by

cofactor of g bq

5 g

Then gbq is o symmettic contravariant tensor of rank two called the conjugate or reciprocal tenrsor
of g (see Problem 34). It can be shown (Problem 33) that N

p9 _ 5
& Brg Sr

ASSOCIATED TENSORS. Given a tensor, we can derive cther tensors by raising or lowering indices.

For example, given the tensor ’4"-‘?G' we obtain by raising the index p, fhe,
tensor A?_ba , the dot indicating the original position of the moved index. By raising the index ¢ also
we_obtain',ﬁf??. Where no confusion can atise we shall often omit the dots; thus 4“’ ean be written
A?bq. These derived tensors can be obtained by forming inner products of the given tensor with the
metric tensor gy, or its conjugate g?%. Thus, for example

4 rh e T 5q b _ el
A-q =g ’1rq’ 47 = g7 g Aps, Alps = Bryg Alls
gtk _ bk *m 4 9.8%

Alin = £ gsn g A.r..p

These become clear if we interpret multiplication by gm as meaning: let r=p (or p=r) in whatever
follows and raise this index. Similarly we interpret multiplication by g,, &s meaning: lef r=g¢ (or
g=r) in whatever follows and lower this index. '

All tensors obfained from a given tenger by forming inner products with the metric tensor and
its conjugate are called associated tensors of the given tensor, For example A" and A, are asso-

ciated tensors, the first are confravariant and the second covariant components. The relation be-
tween them is given by

A =

5 Epq A% or g gi’qﬁ_[

q

For rectangular coordinates 8py = 1 if p=g, and 0 if p#¢g, so that Aé = Aq’k, which explains why
no distinetion was made between contravariant and covariant components of a vector in eatlier chap-
ters.

LENGTII OF A VECTOR, ANGLE BETWEEN VECTORS. The guantily ApRp, which is the Inner
product of A® and By, is a scalat anal-
ogous to the scalar product in rectangular coordinates. We define the length I of the vecior A“:’ ol

/1@ as given by
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L = Ay = FTa4, = g d A
We can define the angle & between A'b and B_ﬂ as given by
4’8,
cos & = ————re——
V4P 4,) (BPBy)

THE PHYSICAL COMPONENTS of a vector A'{) or 4,, denoted by AwA-u' and Aw are the projec-

tions of the vector on the tangents to the coordinate curves and are
given in the case of orthogonal coordinates by

A 2 A5 2 As
Au = ./E; Al = __1 1 A‘U = .L’/g_ A = ? ‘410 = @ A7 = o
‘/g_n = Y 8o Eas
Similarly the physical components of a tensor Aﬁq or Aﬁq are given by
A g A Vg o A% e A Vg g A Ais etc
= N = = . . = 7 = , .
ut — Byy 211 2y 81180 Ve, 80 W a1 B r-—giigsa

CHRISTOFFEL’S SYMBOLS. The symbols

agpr agqr ngq
+ - )
08 AP ox"

i
B | bt

(

23" [pg,r]

TRANSFORMATION LAWS OF CHRISTOFFEL'S SYMBOLS. If we denote by a bar a symbol in a co-
' ordinate system x®, then

r] axp oxq ax"' Bxp azxq

(jk,m] [pg, + y
! RN e P o ol ont

Uit

are the laws of transformation of the Christoffel symbols showing that they are not tensors unless'
the second terms on the right are zero.

{} 3" 9P Bal | BE 9%
2x° 2% 2xF ax? 2%l aEk

GEODESICS. The distance s hetween two points ¢, . a.nd t; onacurve x7=x"(¢) in a Riemannian

space is given by
de cfx
= dt
y / 00 4t i
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That curve in the space which makes the distance a minimum is called a geodesic of the space. By
use of the calculus of variations (see Problems 50 and 51) the geodesics are fonnd from the differen-
tidal equation '

&, { &
ds? pg) ds ds

where s is the are length parameter. As examples, the ceodesics on a plane are siraight lines where-
as the geodesics on a sphere are arcs of great circles.

THE COVARIANT DERIVATIVE of a tensor Ay with repect to %7 is denoted by Ap o and is de-
fined by '
B4, s
Apq = — { }AS
_ : D pg
& covariant tensor of rank two.
The covariant derivative of a tensor _r-if> with respect fo xq is denoted by A?q and is defined by
b _ a4 pPl,s
4 i + {qs 4

& mixed tensor of rank two.

For rectangular systems, the Christoffel symbols are -zero and the covariant derivatives are the
usual pattial derivatives. Covariant derivatives of tensors are alsc tensors (see Problem52).

The above results can be extended to covariant derivatives of higher rank tensors. Thus

p:L s Py aAfi °"rpm
Artirpg =
' 39
§Y B P 5 P, b s Py -eep
- { }Asj;'z...r: - { }Ar;srs.fw:rn = e = { }Ar;...rﬂf_mis
e 9 'ng
3 J 5P, nn
R e e O % Tt
1 qs 1 n g5 1 7

. . C . Py~ Pn g
is the covariant detivative of A’i--- r, Withrespect to x’.

The rules of covariant differentiation for sums and products of tensors ale the same as those
for ordinary differentiation. In performing the differentiations, the tensors g5 ,gf’q and 5 maybe
treated as constants since their covsriant derivatives are zero (see Problem 54), Since covariant
derivatives express rates of change of physical quantities independent of any frames of reference,
they are of greal importance in expressing physical laws. : s

PERMUTATION SYMBOLS AND TENSORS. Define €pgr by the relations
. L

€lon =€y = €g1p =+1, €13 T €gg0 =~ €apy = — 1, epgr =0 . if two or more indices are equal

]

and define ¢’ in the same manner. The symbols € pgy and Fald are called pei—muration symbols in
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thtee dimensional space.

Further, let us define

P = g P

- 1
Cpqr T g e
It can be shown that E;‘)qr and E{;qr are covariant and contravariani tensors respectively, called

permutation tersors in three dimensional space, Generalizations to higher dimensions are possible,
TENSOR FORM OF GRADIENT, DIVERGENCE AND CURL.
1. Gradient. If © is a scalar or invariant the gradient of & is defined by
Ve - - . 9P
where @,35 is the covariant derivative of & with respect to .

2. Divergence. The dwergence of A”"J is the contraction of 1ts covariant derivative with respect to

7, i.e. the contraction of A7 ,q- Then
av AP = 4%, = L S ogah
¥ /g Ak
3, 3,

3. Curl. The curl of Ap isg Aﬁ,q - Aq’fb a tensor of rank twe. The curl is also

R
defined as —e?77 Ay, .

4. Laplacian. The Laplacian of & is the divergence of grad P or

Ve = awd,, = _“(f ik 9
p Vg 3% 6 S "

In case g<0, Vg must be replaced by v ~g. Both cases g>0 and g< 0 can be included by
writing + |g| in place of /g

aA
THE INTRINSIC OR ABSOLUTE DERIVATIVE of AP along a curve x%= xq(z) , denoted by -gté , Is

defined as the inner produoct of the covariant deriva-

q g
tive of Ay and %, e Ay ‘?‘T and is given by
6,  ddy . dxt
g de {p q} e
Similarly, we define
s4? 44 P Y o dat
= = = 4 A_ L
St dt gr dt

The vectors A?:, or /1?> are said to mewve parallelly along a curve if their intrinsic derivatives
along the curve are zero, respectively.

Intrinsic derivatives of higher rank tensors are similarly defined. -
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Bn \
RELATIVE AND ABSOLUTE TENSORS. A tensor ,4?,1 rm is called a relative tensor of weight w
L

ki3
if its components transform according to the equation

LA . @ w A:bi...,/om a§q1 ngm .o‘xri erﬂ
FpreaSp A% Ti...fn Bxﬁi ,ax»pm Bg_csi a%sﬂ
where [ = % is the Jacobian of the fransformation. If w=0 the tensor is called absolute and is
X

the type of tensor with which we have been dealing above. If w=1 the relative tensor is called a
tensor density. The operations of addition, muoltiplication, etc., of relative tensors are similar to
those of absolute tensors. See for example Problem 64.

SOLVED PROBLEMS

SUMMATION CONVENTION.

1. Write each of the following using the summation convention.

de 3 dob db | g
(@y dp = Tgxl 4 T gx? 4+ . o+ ¥ dpp = =Iody
Ol D2 ¥ ? D
@y $EF . BEEAY SRR AR OmEdal dgk _ oxkaa
dr Jul Gt 32 Ot . dr de M e
© @Y+ o @B L+ X%
@) ds? = g @xY 4 g Wx + g (d. ds? = g, dabdx®, N=3
3 s
ey 2 X = dxpdxq. g dx"bdxq,N=3
¢=1 q:‘.l. bq ﬁq

2. Write the terms in each of the following indicated sums.

¥

E B 1 s
(3] ajkx . k§1 ajkx = ajlx + anx + o+ aﬂ{xﬂ

¥
”
A a4 - AMA”+

(by A
Q‘=1 pq D

gl

oxd 3P

L X 0% N=3.
gfkaif o%®

(©) &,
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3 ] ]
- ax-? Ox
= E —_—
Ers F=1 k=1 el 5T DxS
.3 o o ) ;af_ o e
T A% T wr e Swr o
- dxt oxt Ix? ot Ox% gat
11 3gr 3ps 81 2xr s 31 2gr ogs
dx' Ox? o O ox® Ox?
TEnyT s Ry o | ey
dxt 9 o0x® Ox® 2% O
gis “\..'r ags 2‘3 a-f _6'3 33 3—1’ B-

3. &% k=12, ..., N
following equations for N=2,3 and N24.
tinuous derivatives and are independent, when necessary.

are rectangular coordinates, what locus if any, is reptesented by each of the
Assume that the functions are single-valuad, have con-

() akxk= 1, where g, are constants.
For N=2, a,x* +a,x2 =1, aline in two dimensions, i.e. a line in a plane.
For N=2, e,xl +a,x” +a,x® =1, aplane in 3 dimensions.
For N2 4, a,xl +a 22 +,.. + a}]xﬁ= 1 is a hyperplane.
For N=2, (xl)Q + (xQ)Q =1, a circle of unit radius in the plane.
For N=3, (x1f + (:59)2 +(x®? = 1, a sphere of unit radius.
For Nz4, ¢17 + (2% + ... + (&M = 1, a hypersphere of unit radius.
(o) =* = <Ry, -
For =2, xt= xl(u), %% = xQ(u}, a plane curve with parameter u.
For N=3, x* = x*w), x7 = x%u), % = x%w), a three dimensional space curve.
For N 24, an ¥V dimensional space curve.
Ch) xk = xk(u,v).
For N=2, 51 = xl(z,v), x2 = x%u,v) is a transformation of coordinates from (u,v) to {xl,x?),
For N=3, %= (), x = x (v, X" = x’q(u,v) is a 3 dimensional surface with parameters u and v,
For N 24, a hypersurface.

CONTRAVARIANT AND COVARIANT VECTORS AND TENSORS.
, ey "

4. Write the law of transformation for the tensors (a) _.4:}3 . (&) B?jk

Bﬁﬁ axj axk

St
Aq St 2%Y 0z

o .
(&) ik

Az an aid for remembering the transformation, note that the relative positions of indices p,g,r on
the left side of the transformation are the same as those on the right side. Since these indices are as-
sociated with the ¥ coordinstes and since indices {,f,% are associated respectively with indices p,q,r

the required transformation is easily written,

-~

/
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-Pq %P ORT Dut D 3x

by B C - EX° Gx Ox" Ox Ox” pmn
) rst B B 32T 95 ozt ik
- «f
) & = a—"m c®
Ox

. A quantlty A(j, k,1,m) which is a function of coordinates x* transforms to another coordinate sys-
tem %" according to the rule .
3 2’ 3% 3% axs
A e Ty = o~ § =1 A N k, l, m
b g7 9) 3P 2k Bk par SEH™
(a) Is the quantity a tensor ? (b) If so, write the tensor in suitable notation and (¢) give the cen-
travariant and covariant order and rank.

{2) Yes. (&) A?Im. {c) Contravariant of order 3, covariant of order 1 and rank 3+1= 4.

. Determine whether each of the following quantities is a ten'sor. If 30, state whether it is contra-

. o ¥,
b ?(ﬁ)(x seens XY

variant or covariant and give its rank: (a) dx®

Ak
= _ - gt ® E .
{2z} Assume the transformation of coordinates ¥ = % (xi....,xf's. Then d%° = ﬂ dx™ and so dx” is a
X
contravarianf tensor of rank one or a comtravariant vector. Note that the location of the index & is

appropriate,
(¢} Under the transformation xP= P (x R ...,ﬂ), ci) is a functicn of " and hence %7 such that qb(xi, ...,x"'{) =
dn(x x)") l.e. @& is a scalar ot invariant (tensor of rank zero). By the chain rule for partial differ-

entiation, E-qfl o . o Bx axk o¢ o e T, o OxF 9

and transforms like 4, = == 4,. Then <X iz
o5 f Sgf Oxk ax.i’ BxJ" Ox® Ox® 7 dxd 2 axk

a covariant tensor of rank one or a covariant vector,

P .
Note that in —-% the index appears in the denominator and thus acts like a subseript which indi-
¥

cates ils covariant character. We refer to the tensor aiq; or equivalently, the tensor with components
2 . , - .
g%, &s the gradient of ¢, written grad @ or Vo.

2 .

- A covariant tensor has components Xy, 2v— 22, xz inrectangular coordinates, Find its covariant
components in spherical coordinates.

Let Aj denote the covariant components in rectangular coordinates xi=x, x’= 5, £®=z, Then

Ay = xy = 242, Ay, = 2922 = 2x9—(x9)2, Ay = 2153
where care must be taken to distinguish between superseripts and exponents,
Lei ’:{k denote the covariant components in spherical coordinates X'=r, ¥°= @, %= &. Then
. s 'ax
o Ay = o 4
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The transformation equations between coordinate systems are

1

= X sin %7 3

cos x°, x2 = ¥* gin ¥2 sin ¥°, ¥ = ¥ cos ¥

Then equations (1) yield the required covariant components

_ Sl ]
I = GLA1+3-"EA2+"L,4S
© oot axt oFt

[

= (sin¥2 cos ¥ (x}x™ 4+ (sin ¥ sin &%) (27 — o3y + (cos ®2) (x1x%)

= (sin & cos @) (r2 sin? 7 sin b cos ¢
+ (sin & sin @ (2r sin 7 sin & — # cos2G

+ (cos 532 sin € cos & cos o)

— Thon 9
1, = % A+ ng 4y ﬁf; Az
aqx X az?

= (rcos & cos 4y 7 sin® & sin & cos )
+ (rcos & sin &) (2r sin & sint — 2 cos?E)

b (=7 sin &Y (7 sin & cos & cos )

— Al i 2
A, = 2o+ g+ x4
f ot ome T ogxr

= (—rsin & sin @) 7 sin®5 sin @ cos
+ (rsin & cos @) (2r s5in 7 sin ¢ — 57 eos” )

+ (0} (¢ sin & cos 7 cos &

o4
8. Show that -5-?? is not a tensor even though ,445' is a covariant tensor of rank one.
% :
I
By hypothesis, 4; = - A, . Differentiating with respect to xk,
o E“’ b
GA; 2.7 Ody ¥ P
P T i g U R 8
Jx oxd Ox ax Bx
~ , -2
Oxp BAQ qu o xé

= 4+ _

ol 2ed 9% mran F

A d &AP 22 ,P
f G ohag T Eag A
o7l ox” 2t b
’af]b
Since the second term on the right is present, does not iransform as a tensor should. Later we
QxS
o4
shall show how the addition of a suitable quantity to —— causes the resnlt to be a tensor (Problem 52).

%
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9. Show that the velocity of a fluid at any point is a contravariant tensor of rank one.

k
The velocity of a fluid at any point has components dx_ in the coordinate system xk. In the coor-

; 2 s 9%

dinate system x the veloecity is T But
& R e
d Ak dt

by the chain rule, and it follows that the velocity is a contravariant tensor of rank one or a contravariant
vector.

THIE KRONECKER DELTA.

o

£ b g
10. Bvaluate (a) Sq AS . (B éq é’r'

B '
Since 5@‘ =1 1if p=g and 0if p#q, we have

& i ~ /
(a) B&f,Azﬁf = 4., (B 5§ bf = Sf
b
1. sShow that 2 - 5},
2d
?
If p=¢q, % = 1 since xp=xq.
#
If p#g, %_x_& = 0 since «¥ and 27 are independent.
v
b b
Then ox = &,
ax‘-? {
Po~=g
12. Prove that o% 0% _ F
%Y 9x” r

Coordinates x9 are functions of coordinates ¥ which are in turn functions of coordinates x'. Then

by the chain rule and Problem i1,

¥ _ ww | ¢
Ox" ?;Eq ax T
P AeP g q q —
13. If 4 = 25 4 provethat 4 = ?—— A
Oxd oE?
_# o 3
Multiply equation 4 = oF Aq by x|

Ox" 8#
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_ =P :
2 A35 = O oF Aq = 3; Aq = A" by Prob, 12. Placing r=g¢ the result follows. This
ax? P 37

indicates that In the transformation equations for the tensor components the quantities with bars and quan-
tities without bars can be interchanged, a result which can be proved in general. :

Then

14. Prove that Sf; is a mixed tensor of the second rank.

b . .
If bq is a mixed tensor of the second rank it must transform accoraing 1o the rule - P
-5 =l 3.9 P
5, - or’ Ox' 5,
%P Bk
= b 3 . — j .
The right side equals 9% Bx . 37 by problem 12. Since & = 8;: =1 if j=k,and 0if j#%, it fol-
Bxp Bfk g

p
lows that Sq is a mixed tensor of rank two, justifying the notation used.

Note that we sometimes use qu =1 if p=g and 0 if p#q, as the Kronecker delta. This is how-
ever not a covariant tensor of the sacond rank as the notetion would seem to indicate.

FUNDAMENTAL OPERATIONS WITH TENSORS.

bq

g ' .
" and B, are tensors, prove that their sum and difference are tensors.

15. i 4
£q Bq

By hypothesis A, and B, ate tensors, S0 that

o . =

L P Bl gt "

S R SRR g

P PEE B
) _jk e agd omk ot 7, BP0
. e gk o) ok e P9 PO
Subtracting, (sz — Bl 3 = ﬁ -’ax—q ja-x_:z A.r — B‘?’ 3

_ g P7 . P4 q
Then A?, +B, and Af,q— B, are tensors of the same rank and type as 4, and g, .

pgs g s

P
16. If- 4, and B: are tensors, prove that €., = /<_1,r B, is also a tensor,

?‘
We must prove that CPq

5
t is a tensor whose components are formed by taking the products of compo-
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nents of tensors -qu and B:. Since qu and B; are tensors,

= T e

P ~ LT
Ox" Ox! OF

gnm = aEm ’a_xt B:
oxS Bxh

_& = ek our hmm ot
Multiplying, T = 97’ OFF Lot g X |

P B 3=t S

which shows that AMB is a tensor of rank 5, with contravarlant indices p,q,5 and covariant indices

. thus warranting the notation Céq . We ezll Cifs = Aiqﬂt the outer product of ‘fif,q and Bf; .

b bg : S
17. Let A' q be a tensor, (e} Choose p=¢ and show that A Ii:’ where the summation conventwn 1s

employed is a tensot. What is its rank? (b) Choose p=t and g=s and show similarly that A
is a fensor. What is its rank

:f>

oq
(@) Since Arst is a tensor,

- 3 oEh At Bes et 0
(I3 Iﬂm B 8 Nzl wem a=n TSt
Ox” ox' OF¢ 9x% Ox

&
We must show that A%_sqp is a tensor. FPlace the cotresponding indices j and r egual to each other
and sum over this index., Then

L B 3R o Oes 3t 0
In P 2d ol agm ozl TSt
b %) Txk T %S BT

oxd 3P ud ;! owm O

©OEF OaT oaS P9
P 29 gl ogn TSt

and so Aig;ﬁ is a tensor of rank 3 and can be dencted by st. The process of placing a contravariant

index equal to a covariant index in a tensor and summing is called contraction.

By such a process a
tensor is formed whose rank is two less than the rank of the original tensor.

fq
¢bY We must show that A?‘Q{D is a tensor. Placing j=x and k=m in equation (I) of part (a) and summing
over j and &k, we have ’

Ry
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A_jk ~ BE‘? TP Dt S ol qu
L= e T~y oo Aest

25 3P Bt 3wl 3wk om

xt 98] s BEh T 409
ol 3P ekl el T

_ .5 BP0
= Sfi 89’ Q Aoy
- L
A

which shows that /lfgb is a tensor of rank one and can be denoted by Cf. Note that by contracting

fwice, the rank was reduced by 4.

P
18. Prove that the contraction of the fensor Aq is & scalar or invariant.

i =7 ~ q
We have Akj A Aﬁ)
Bxﬁj 5P g
— =i 4 q
Putting j=k and summing, A? = -85-{ ﬁ— ‘4,42 = bb A? = ‘4;)
Y ax"b BEJ 9

Then X“.?z Aﬁ and it follows that A;b must be an invariant. Since A;b is a tensor of rank two and

contraction with respect to a single index lowers the rank by two, we are led to defire an invariant as a
tensor of rank Zero.

19. Show that the contraction of the outer product of the tensors A?5 and Bq is an invariant.

—i g - q :
Since A¢ and Bq are tensors, Ajz Bi A?ﬁ, Bk = Bi Bq' Then
Py Ak
_F. =7 . G
A B 2 %l Py
k axp sz q
By contraction (putting j=% and summing}
—j= wf o0 q b
AJB_ = QEE_BL_APBG = gpAﬁgq = AR
7 2P o »

and so Aﬁﬁp is an invariant. The process of multiplying tensors fouter multiplication) and then contract-
ing is called inner multiplication and the result is called an inner product. Since A?bB?b is a scalar, it is

P
often called the scalar product of the vectors A" and By.

2 g5
2p. Show that any inner product of the tensors A,r angd Bt is a tensor of rank three,

P g9 P gs
Outer product of ri'r and Bt = ArBt .
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Let us contract with respect to indices p and ¢, i.e. let p=t and sum. We must show that the result-
ing 1nner produet, represented by ApBg , is a tensor of rank three.

13
By hypothesis, Af and Bg ate tensars; then

i . T ar EIm 05l B¥m 3t g5
r T n T g5t

%P wh ad DS

Multiplying, letting j=n and summing, we have

u

AEm . o moEmat p e

I uP akad s ol T

showing that Af, Bq is a tensor of rank three. By comtracting with respect to g and r of s end r in the

product Aqu . we can similarly show that any inner product is a tensor of rank three.

Another Method. The outer product of two tensors is a tensot whose rank is the sum of the ranks of
the given fensors. Then AQBq is & tenser of rank 3+2=5. Since a contraction results in a tensor

whose rank is two less than tha.t of the given tensor, it follows that any contraction of Aﬁ Bq is a fensor
of rank 5—2 =3,

If X(p,g.7 is a guantity such that Xip, q,r)B for an arbitrary tensor Bq. s Prove that
X(p.q,ry =0 identically.

Sinee Bin is an arbitrary fensor, choose one particular component (say the one with ¢=2, r=3) not
equal to zero, while all other components are zero. Then X(p,2.3)B§n= 0, so that X¢p,2,3Y=0 since
Bgﬂ #0. By similar reasoning with all possible combinations of g and r, we have X(p,q,r) =0 andthe
result follows.

A quantity A(p,q,r) is such that in the coordinate.system «?, Alp, g,r)B = C where B is an
arbitrary tensor and C;; is 4 tensor. Prove that A(p,q.7) is a tensor.

In the transformed coordinates %%, ;{v(j,k, 5! Elkm = Ejm'

—. DEF WP AT G5 227 3P s % 3’
Then A{j, k1) — — =B = XX 52X 0~ A r)B
T oS 37l 7 s o5 P P e
or _[Eﬁ.'aizq(fkl)—»%;{(pqr)] qs: 0
_ 9’ Lax9 dgt Szt
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L

3.0 )
Inner muitiplication by -,'\'—’-f—m {i.e. muliinlying by :\’i and then contracting with z=m) rields

o Tark ot - 2’ as
by | =% == Ay kD - = Ap.en | By =D
o ol S '
koA v — o P an
or [“’" dx_ Ak - 22 ,—'Hp,t},r)] B, = 0.
a7 Agt axd

gn

Since B,,,' iz an arbitrary tensor, we have by Problem 21,

ek, o 8
cxvo e dx
A ED - LAy = 0
o x e [y
o 0 2En
Inner multiplication by -~ yields
X Gy

Eon — B 0 non
‘Jq; bl Alf kB D — £x ﬂ ?—x"' .li(p,q,r) = 0

“__:.‘ T A
gz Jx® o

~ B0~ G om

- ox” ox' aE”

or A(jomny = o = Alp.r.r)
Al OET 3T

. r
which shows that A(p,7,7) is o tensor and justifies use of the notation A, .

In this problem we have cstablished a special case of the gquotient low which states that if an inner
product of a quantity ¥ with an arbitrary tensor 8 is a tensor ©, then X is a tensor.

SYMMETRIC AND SKEW-SYMMETRIC TENSORS.

bar
23. If a tensor 4_, is symmetric (skew-symmetric) with respect to indices p and ¢ in one coordinate
system, show that it remains symmetric (skew-symmetric) with respect to p ard ¢ in any coordi-
nafe system.

?q
Since only indices p and ¢ are involved we shall prove the results for B

2 . by b
If B ' issymmetric, B = B . Then
_ik =i o=l =k aed L Y
B - C_"Ak :aiﬂ T < 3 ~_’..}\ Bv;.b - Bk‘f
B oxt o
Pq . .. i . :
and B remains symmetric in the x*coordinate system.
9. Pq o
If 8 iz skew-symmetric, 5 = —~ 8" . Then
_ik 227 3k o9 2% agd e Y
BJ - .E:'x‘b dx 7YoL Ej‘r‘d Ox}) K - —Bk
Cx ?}x@' O e

& .
and B 7 remains skew-symmetric in the ¥ coordinate system,

The above results are, of course, valid for other symmetric (skew-symmetric) tensors.
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24. Show that every fensor can be expressed as the sum of two tensors, one of which is symmetric
and the other skew-symmetric in e pair of covariant ot contravariant indices.

Consider, for example, the tensor Bm. We have

27 . %(Bququﬁ) + %(Bm_ Bq:b)

Pe bq

= «é(qu+ qu) = qu is symmetric, and § W-— Bqﬁ) = _Sq;b

But R = (R is skew-symmetric.

By similar reasoning the result is seen to be true for any tensor,

f &
25 If &= a AJ A show that we can always write P = bjk A7 4 where bjk is symmetric,

) ik v i ik
F = ajkA A = aij A = aij A
ik i R i R
Then e a7 - (a5 + @y 47 4
- Pk _ J .k
and D o= Saprap A’ = by a4

whete &b, = Yo, +ae ) = b,, 15 symmetric.
Jro 2GR kg kj

MATRICES.

26. Write the sum S = 4 +B, difference D=4 B, and products P = AR, (=BA of the matrices

3 1 =2 2 0 -1
4 = 4 -2 3], B = [-4 1 2
-2 1 -1 1 -1 0

3+2 1+0 —-2-~1 5 1 =3
S=4+8 = —-2+1 3+2) = ( 0 -1 5)
—2+1 1-1 =1+9 —1 0 -1

1-0 =2+1 1 1 -1
bD=4-B= ( 4+4 —2-—1 3—2) = ( 8§ -3 1)
-2—1 1+1 —-1-0 -3 2 -1

b
i
i,
=
&

(X2) + (-2)~4) + (3L} (4X0) +(=2X1) + (3X-1)  (4)-1) +(=2}2) + (3)(0)

(BN2) + (1)=4) + (-21Y  (BNO) + (IN1) +(=2)X-1)  B}-1)+ (1X2) + ("2)(0))
CID T (D) + CLL) @200+ (A1) + (~1)0=1)  (=2X=1) + (1N2} +(-1)0)

1w}

0 -1
1 —~5 —8)
2 4

8 1 -3
(—12 —~d L] )
-1 3 =i

This shows that 4B # BA, i.e. multiplication of matrices ls not commutative in general.

!.D

BA

2
It
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27. It A = ( 2 1) and 8 = ("1 2), show that (A+B)(A—B) £ A — B>,

A+B=(1 3), A-B =( i ”"1). Then (4+B)(4—8) =(1 3)( 3 “1) : (“9 14)_
21 -4 5 2 1f\-4 5 2 3
cofryfey_ (8o 22 [ ey 2\ 78
L ST 2 Y -5 8}’ 3 —2)\ 3 -2 -9 10}’
Then AZ—B%= (_4 11) .
4 -2

Therefore, (A+BY(A—B) # A~ —B°. However, (A+R)}(4—B) = A°—AB+BA-— 5.

28. Express in matrix notation the transformation equations for (a2) a covariant vector, () a contra-
vatiant fensor of rank two, assuming ¥ =3.

_ g
{2y The transformation equations A{j = % AG can be written
1 =P 8

e

_;1_1 Iy . A‘l
0wt 0%t oRt
A_ = axi E"xg Bx 8 )‘1
? W o o ?
i a w2\,
& —— -1 = =
9% %°  or°

in terms of column vectors, or equivalently in terms of row vectors

ot ot Ot

o ox?2 ot

- = T Ox® B O

(A As A = (4 A A — = ==

e R T e

e %’

ot o\ o

_pr =F 2—r gs
(by The transformation equations 4 = ?% g—xg A can be written
dx x

—11 —12 —13 -t =1 poi 11 12 12 i =2 -3
A EEZE\ [T S &S
% % X I % xt
A—m A—-zz ZQS _ % o9 o 421 szz A23 E E E
' ) ut o ws || 32 WE P
_4—31 A—sg A—rss ?E 13 ot ASl Asz Ase _z_l % 13
Ox1 axz axs axq axs Bxa

Extensions of these results can e made for ¥ > 3. FPor higher rank tensors, however, the matrix nota-
tion fails.
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THE LINE ELEMENT AND METRIC TENSOR.

29, If ds? = gjk dx’ dx® is an invariant, show that gjk is a symmeiric covariant tensor of rank two.

By Problem 25, ® =ds?, 4’ =dx’ and Ak=dxk; it follows thaf g, oan be chosen symmetric, Also
since ds® is an invariam,

ik v k Ak
z dz’ dx9 = g, dol d® = £, —a?f— dx’ @_x_ & = g, F—a—x-{ ox" dsT::b )
2q Jk *awp oxd 3P 39
J 2,k
Then §, = g, Ol 2" and g, is a symmetric covariant tensor of rank two, called the metric zensor,
pq ik owb 3x¢ o

30. Determine the metric tensor in (a) cylindrical and (b) spherical coordinates.
{2) As in Problem 7, Chapter 7, ds? = dp2+ p2d¢2+ dz2,

I a'=p, 2=, a®=2z then g, 1L g29=p2, Bin=1 8,,78,70, 8,8, =0, g

a1 giszo'
8y By By LA
In matrix form the metric tensor can be written 801 By B = [ p2 0
€51 8o B 0o 1
(&) As in Problem 8(a), Chapter 7, ds® = dr2+246%+ r2gin28 aq’.
1 0 0
If #l=7,x%= 6 »% = the metric tensor can be written 0 2 0
6 9 r?sin28
In general for orthogonal coordinates;, 8, = 0 for j#k.
B11 &o Bin
31. (a) Express the determinant gz = €, &, &,| interms of the elements in the second row and
851 Bao &ap

their corresponding cofactors. {5y Show that gjk Gij.k) = g where G{j.ky is the cofactor of

gjk in g and where summation is over % only.

(¢} The cofacter of g4, is the determinant obtained from g by (I} deleting the

row and column in which
g'k appears and (2) associating the sign (—1)J+!a to this determinant, ‘Thus,
J

Cofactor of g, = (="' | Faz :13 ) Cofactor of g = (—1y°"? :11 1|
820 Egg a1 Bdg
Cofactor of g = (—=1)7% | B Bip
L

Denote these cofactors by G¢2,1), G(2,2) and G(2,3)

respectively. Then by an elementary prineiple
of determinants

g G + g, 6G(22) + g 6(2,3) = g
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32.

33.

34.

TENSOR ANALYSIS

(&) By applying the result of (a) to any row or column, we have g5 G(j.ky =g where the summation is
over & only. These results hold where g = l it | is an Nth order determinant

(a) Prove that g G(3,1) + g 63.2) + g _0(3,3) = 0.
(b) Prove that gjkG(p,k) o it itp.

By By Epn
(@) Congider the deferminant €, %, 8 which is zero since its last two rows are ldentical. Ex-

By Bpp 8o

panding aceording to elements of the last row we have

LGB+ g, G(3.2) + g, 63,3 = 0

(b) By setting the corresponding elements of any two rows {or columns) equal we can show, as in part(a),
that g C(p,k) =0 if § # p. This result holds for Nth order determinants as well.

Define gjk _ @ where G(j,k) is the cofactor of 8 in the determinant g = \gjkw 0.
Prove that & g% = 5;.

By Problem 31, gjk G(;'k) = 1 or gjk gjk = 1, where summation is over & only,

By Provlem 32, &, 5(%’#@ =0 o g =0 i phf.

P
Then g gP=11f p=j, and 0 if p# ) = &y
§

We have used the notation gjk although we have not yet shown that the notation is warranted, i.e.
that g7 ® is n contravariant tensor of rank two, This is established in Problem 34. Note that the cofactor
has been written G(j k) and not ij since we can show that it is not a tensor in the usual sense, How-
ever, it cen be shown to be a relau‘vg tensor of weight two which 18 contravariant, and with this extension
of the tengor concept the notation ij can be justified (zee Supplementary Problem 152},

ik R .
Prove that gJ is & symmetric contravariant tensor of rank two.

Since g. is symmetric, G(j, k) is symmetric and so gjk = G(j,k)/g 1s symmetric.

ik
I ;5’?5 is an arbitrary contravariant vector, Bq = gp B?5 is an arbitrary covariant vector. Mulfiplying
; a

by gJGf, -

ja iq po_ siopp i i9s o gl
&8, = g% BY = 8 B° = B o 7B =B
q bq p g

Since Bq is an arbxtrary vector, gj 9is a contravariant tensor of rank two, by application of the guotient
law. The tensor gJ is called the conjugate metric teasor.
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35. Determine the conjugate metric tenscr in (@) .jlcylindrical and (b) spherical cootdinates.

]
o2
0

{e) From Problem 30(a), g =

= &

[ =
L = = |

cofactor of g,
g

o
It
1
bro_] —

cofactor of [
-4

Y
3a| —
L= ]
=D
bMH

cofactor of g,
g

%
i
1
bn[ —-
1

eofactor of g,

"OM[».-
[

g

Similarly gﬂe: G if j#£%k. In matrix form the conjugate metric tensor ean be represented by

1 0 0
o 1?9
¢} 0 1
1 ] 0
(b) From Problem 30¢6%, ¢ = [0 :2 0 = 4 sin? @

0 0 r2Zsin2d

As in part (a), we find gll=1, g2=- 8- 1
this can he written

st é

0 0 1/2 sin? &

189

and gJ =0 for j#%, and in matrix form

36. Find (a) g and (M) gjk corresponding to ds? = 5(daly" + 3(dx2) + 4dx®Y — 6 deda® + 4 du® dad

5-20
(a} gn=5, g22=3,g33=4,g12 8y -3, 323=g32=2. gm=g31=0. Thenr g = |—=3 3 2= 4,
0. 24

(&) The cofactors G{jk)y of 8ip are

G(1,1Y=8, G(2,2)=20, $(3,3)=86, G(1,2)=G(2,1)=12, G{2,2)=6G(3,2)=—10, G(1,3)=6(3,1)=—6

Then glt=2, g%2=5, g®=3/3 glo=gh-3 gB-82-_5/9 gli=g¥=—3/2

Note that the predunet of the matrices (gjkj and (g‘? k) is the unit mairix 1, i.e.

3 —~3 0 2 3 —3/2 1 0 40
~3 3 2 3 5 —5/2 = ¢ 1 0
6 2 4 —3/2 —5/2 3/2 D 0o 1
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ASSOCIATED TENSORS.

ik

B k
37. ¥ A. =g, A, showthat 4 = J7 4.
SRTE £ %
Multiply 4, = g A% by 1.
0T By
iq , _ 09 E_ooT k7 v_ Jq k_ ik
Then g’ 4= g g4 =B, A"~ A, le. A =gl 4y on A= g A

The tensors of rank one, Aj and AE, are called associsted. They represent the covariant and centra-

variant components of a vector,

?

38. () Show that [” = o 4 A" is an invariant. (b) Show that L7 = g7 Ay Ay

k
(2} Let A, and A be the covariant and conttavariant components of a vector. Then

J
— i _ -
Aﬁv = @._ ,4“?., A= .ai Ak
:rid ox®
— J oo i i
and LI - oA RL I RPN LI
1 P Dk J B J

.4
s0 that Aj- 4" is an invariant which we call 7.2. Then we can write

. i i 4 b
L‘ = A. A = A A = A
fin %pq

A9

2_a A=A, A =P A A = g
{by From (g}, L _AJA Ajg Ak g AJA'!E g Ap"{q‘

The secalar or invariant quantity L = v 4 A"L’ is ecalled the magnitude or length of the vector with

covariant components .4?> and contravariant components Ap.

P

39. (g U fi?b and Bq are vectors, show that gbq A Bqf is an invariant.

P o7
e 4B
(b} Show that g ig an invariant,

V’(A?&Ap] ik Rg)

b, _F 7 _ P o0 N
(@) By Problem 38, 4 B{; = 4 g?qu = gWA B’ is an invariant,

p /B - Ep £5
(5) Since A’ Aﬁ; and Bqu are invariants, & (A’ A{J)(Bqu) iz an invariant and so -9 isan
| !
invariant. R v (ApA ﬁ) (Bq E q)

We define £p0 A 5
cos & =

Va4 44y (87 By

as the cosine of the angle between veciors A? and BY. I Bpg A¢8q= Abﬂé = g, the vectors ate
called orihogonal. i
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40. Exptess the relationship betwaen the assoclated tensots:

(e) A7 and A:bq'r" (b)A ., and A9%7 , (C)AJ{: <79 ; and A['"s1 .
(@ 477 = gﬂﬁgkqglum o Ay, =g 8 & 47
it TRg Tir
®) Aji - &8, ATT o 4T - gie ”AJI
@ Aigrg = e £ o 45T = sye s Al

41. Prove that the angleé 6‘12, 6‘29 and 631 hetween the coordinate curves in a three dimensional co-
ordinate system are given by _

cos &, = gi cos 4, = 8273 cos &,, = —g:'-L—
-l 2 T ! 31 -
gii g?? g22 g33 333 gli

2

Along the x* coordinate curve, x°= constant and 2® = constant.

Then froin the mefrie form, ds2 = gn(dxi)g or iﬁ =L
&

Vgu
Thus a unit tangent vector along the x1 cwrve is A: = }g_ BI. Similarly, unit tangent vectors along
V Baqq .
+ x4 a *
the % and »® coordinate curves are 4, = ,_1___ o, and A = ,}-_ O -
V¥ Eop T Vi

The cosine of the angle 6‘12 between Ag and A; is given by

$ q 1 1 NN 8.5
cos G, = AL A, = T T A :
2 T By M2l 9 VB, VEm Ve B

Stmilarly we obtain the other results.

42. Prove that for an orthogonal coordinate system, g =g =g, =0D.

This follows at once from Problem 41 by placing 1912=923=931=9l)°. From the fact that Bpo*
it also follows that -5

f3p

g‘?2=g‘13: 0

43. Prove that for an orthogonal coordinate system, g, = —ii v 8y = —ig v Bp = —lq
g %8 gas

From Problem 38 ?brg = 8?5

' £ g g-

¥p=g=1, g g, =1 o g'g, +g%g, +g%, = L

Then using Problem 42, g

-1
11"511'

y and if p=g=3, g3 =

Similarly if p=¢=2, £, -; 531—3 .

4
P
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CHRISTOFFEL'S SYMBOLS.

s b -
44. Prove (a) [pg.r] = [gp.r]l. &) {PQ} = {qp} , (o) [pg,r]l = Brs {pg} .

? 3 ? r.
@) [pa.r] = Sr o gy o 5
=T R W W p O W

by {:q} = g [per] = g7 [ap.r] = {e‘;’}

& _ & - + -
(c) gks{Pq} =g, 8 [par] Sk (pg,7] = [pe.k]

or [pg,k] = gks{;g} ie. [pe:r] = 8,4 {:g}-

Note that multiplying [pg,r] b¥ g5" has the effect of replacing r by s, raising this index and re-

g g
for + P qf) = {qp,7].
X

& . R s
placing square brackets by braces to yield {P‘I} . Similarly, multiplying {PQ by 8,01 &, has the

effect of replacing s by r, lowering this index and replacing braces by square brackets to yleld [pg.r].

dg
45. Prove (a) -é-%i = [pm,q] + [gm,p] _
x
{c { P } = 9 1Invg
b agPG’ __tnpqt _ g} P ) pg ot &
) 2x™ 8 mn § mn
g o 3, dg, O g g
(@) [pm,q] + [gm.p] = 3( AR G WY LA i S
Ut P wI % 3

- L N .
®) SR8 g) = axm(ai) = 0. Then

i
Tos. it )
gjk St‘j . ng ¢ -0 or g Bg‘} - _gjk agtﬁ
™ 3™ i ©f G B
; )
, , Il . b OB
. T - J J
Multiplying by g7, g° 5w T T e i
i
) e iB e, o
Le. 5 Ta% = =" " (lim,j] + [imiD)

% ik ik -
o P —& im{ 8 jm

and the result follows on replacing 7,5,i,j by p,q,n,n respectively.

(¢} From Problem 31, g = 8ix G(j ky (sum over & only).
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Since G(j,k) does not contain %k explicitly, _ag_ = G{j,r}. Thlen, summing over j and r,

agjr
3 . % &ty %
o E T ®
Jr
bia agj’r o .
g€ =3 = & (Lims) + [y

1
]
o~
e,
L
3 -
"-w
+
P,
g -

Thus

D - i)

j i 3
1 % _ } , 2 nvg
R (1 SR 1 BT

The resuit follows on replacing j by p and m by g.

46. Derive transformation laws for the Christoffel symbolg of {a) the first kind, (b) the second kind.

N -V
(2) Since gjk = B"J Bxk gﬁq
o Tl W e a8 P
%" )l o7 3t B mhamk P9 thopd gk A9

By cyclic permutation of indices j,k,m and p,q,r,

@ - Bm a0 o Crnt S oA
2 %" 0" WP oY e a2 op® oz®

P R s I S B S
sk ™ O%) ¥ oFF =™ oz® o Erp =k aE® oxd TP

Subtracting (I} from the sum of (2) and (2} and multiplying by %, we obtain on esing the definition
of the Christoffel symbols of the first kind,

P o d T ¢
(4) [fk,m] = ax _a_x__ ai {Pq,r] + B X ax
ozt 3=k 3% %% 227 P
" ox™
(b) Multiply (4) by F™® = ¥ to obtain
B S ot &
" [jk,m] = .a_ﬁyé’_{ai_gst [pg,r] + — o 3:35 axqfa-ng-j g5t

) 2nE %7 xS ot © BP9
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N 2
n Ox” Dxt 0T LT Ay 3% 4
= S5 25 8 g5t pa, . O%% o7 st
e {fk} 7 ot o 26 PPl S s 5 g
. wn { s } A
o agk o Wee) ol ok ol
T . .
since & gt [pg.r] = g5 [pa,r} = {:q} and 8, gStgm = gsq%q = 5,
s prove o3 {ry gia_{}
' 3%/ ozt f 3z oef ozt lpef

T N - ;f; 7 2= 20 o8
n St Ox? JEN & D x %

F bl By, <. = 3T . * ; ¥
rom Problem 46 (b) {ﬂﬂ} 2] Bk {pq} azd 3% D

P~ G z P
Multiplyingby:‘?ﬂ {"‘}E . O % ém{s}+—_——-—ax s

ot kS %) ok A\pe oxl ag® P
- o
LB (n), dF
azd ag® Lpg s 3"
2
. i
Solving for - , the result follows.
o5 0%

48. Evaluate the Christoffel symbols of (a) the first kind, (5) the second kind, for spaces where
=0 if p#£g.
gpq PFq

@ I p=g=r, [pgr] = [ppopl = 1( po , “Spp pp)
f FEeF 2\ 3 B P

b |
%)
X
S

ag ag 3g ag
¥ p=gér, [pa.r] = [pe,sr] = l( pro, Cbr _ M) I -8
2 axﬁ Bx¢ axf 2 ’ax?'
ag ag ag ag
It p=réq, [pq.r] = [pq,p] = l( 1‘:5}5_!_ q¢>_ '.bQ) = i fod
2\ 37 %P o 2 0

It p.q,7 are distinet, [pq,r] =0,

We have not used the summation convention here.

(b)Y By Problem 43, gﬂ =gL {not summed)., Then

i

' .51 .
{5} = g% [pg,r] = 0 it r#¢s, and = g>° [ pg,s] = [pg ](not summed} if r=s.
P4 bss

BY¥ (a}:
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[pp,p] 1 %%y 13
pr:q:s' {3}={p} = iy S R i oY __]_ng
pg pp 840 ngﬁ p 2 g.p PP
2
5 b [PP:SJ i ‘gsbjb
f = N = = _— e — .
emars {Pq} {PP} 8ss %ss Ox°
[po) 1 %% 1 3
¥ p=s#yqg, {S}z{P = = o ey = -~ ——Ing
. 2 A b
pq 44 g;w Zgw O 2 t

If p,q,s are distinct, { 3} = 0.
pq

49. Determine the Christoffel symbols of the second kind in (e) rectanguolar, (b) cylindrical, and
{c) spherical coordinates.

We can use the resnlls of Problem 48, since for orthogonal cocrdinates gybq =0 1if p#g.

{#) In rectangular coordinafes, g, =1 so that { ° } = 0.
pr pq

(6) In cylindrical coordinates, x* =p, x2 = b, x® = z, we have by Problem 30(a), 8, 1, 8, " faia 8o =1
The only non-zeto Christoffel symbols of the second kind ean occur where p=2. These are

g
1 1 - 13
= — = — — _._(p) = _p,
{22} 2, o' . 2 3p

{z}g{z}_;agez_Li o 1
21 12f 7 o2g, 3wt 20?30 0 T o

{¢) In spherical coordinates, x'=r, x?= &, x®= @, we have by Prob.30(#), 8. 1, 8,0" r? g =r28in?6,

a3
The only non-zero Christoffel symbols of the second kind can occur where p=2 or 3. These are
1 1“8 10
{ } = _— _Qf = - —(;-9-) = —r
22 2, Sx 2 Gr
{2}= 2}=_1_33_w:_1..§_(r2)=1
21 12 28,, ox' 2r? or r
1 1 Ogg 1 3
{ } = - — - - 7sin?0) = —rsin?d
33 2g11 (‘,‘xi 2 ar
2 g,
{ } . oL s % 2 (F?sin®%) = —sin cos &
£
{3}={3}=_1 as . _ 1 _a_(r-QsinQé’):l
31 13 28, Ox! o2 gin? & or d
9 E
{ 3 } = {3 } . Hg‘m = 1 — 7 sinfdy = cotd
82 23 28,, 2 2% sin? & 08
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GEODESICS.

t
50. Prove that a necessary econdition that [ = f 7 F(t,x,x)dt be an extremum (maximom ot min-

s
imum) is that of _ d (@.E. *

~3 = 0.
O de  Ox

Let the curve which makes I an extremum be x = X(#), ;S¢S #z. Then x= X()+ £7)(t), where €is
independent of ¢, is a neighboring curve through ¢ and & so that 7)(5) = 7(¢e) = ¢. The value of I for the
neighboring curve is

$ ..
ey :fg Fit, Xtem, X+emde

171

This is an extremum for €=0. A necessary condition that this be so is that éfi = 0. PBut by differ-
entiation under the integral sign, assuming this valid, ¢=0

d1 t2 op AF =

e = f=—7 + =-TN¥dt = 0

¢ |can ty Ox o
which can be written as

fg > 3 tQ tg [
f o s Loy nd(Eya - f n(E - L PV = o
by Ox o% 2] tq de o ty Ox dt o
Since 7; is arbitrary, the infegrand B—F -4 (;a-{) = 0.
‘Ox di O

to
The tesult is essily extended to the intepral f Fee, 2%, 81,2222, .., o8, 2%y de
ty

and yields 3‘1 4 oF )

P de P

called Euler’s or Lagrange’s equations. (See also Problem 73.)

27 p 3.9
51, Show that the geodesics in & Riemannian space are given by Cflsx? + {p:}} %’-‘; %— =9

te  /
We must determine the extremum of f gpqip 29 g nsihg Euler’s equations (Problem 50) with
1

F = Vgéq 3%, we have

g
oF  _ 1 @, AP0y pg b 1
Suke 27y Ak
oF _ 1 L o
-_H._k - 2 (gpq £ %) 2 2g:ﬁ’kx

Using g—‘: = gbq P 39 , Euler's equations can he wtitten
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B -
g.. X dg,
Ly L B Ly
i I3 23 ax'b’
2 e g 2%
or gk'x'p P L8 N i 3
p qu 2 axk s
3% 3,
Writing i :635 2 = l-(ﬁ + —ik—) :Eij 27 this equation becomes
D 29
gkﬁz
g v [pgr)#P s - R
PR s

If we use arc length as parameter, =1, ¥=0 and the equation becomes

2 P P .9
d x dx” dx
2 =~ o+ r . — = o
Pk ds? {pg.k] ds ds

Multiplying by ™%, we obtain

P B W L
P2} ds ds

THE COVARIANT DERIVATIVE .

b s
52. If A?:, and A" are tensors show that (a) Ap,q é;a - {pg} 4

P
and (b) Afj o4 + { P }AS are tensors.

:f B qs
— s
(@) since 1, = % Ay,
7 BEEJ
(2 % @
%% ond b gk w3k 7
From Problem 47,
WZ{WE_EEV}
%/ o2 R T
Substituting in (I3,
Eif. = ag@fj% {“}@{4 _?ﬁia_xl{r},q
3P ol okt LA o L A

L%£%+F% %yfh
o et g T o e e f s

or
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. ¢4
and ;av—q — { ® } A? is a covariant tensor of second rank, called the cevariant derivative of AP with
x rq -

respect to «7 and written Ap oo
G

(b1 Since ,?f . & Ar,
N
Fi 2
- ard L walat 8
B 3 oxb B¢ %t ot

From Problem 47, interchanging x and X coordinates,

B I {} ol 2 e {r}
D On? e f e w et U
Substituting in (23,
ar’ | sl {}ﬂa_t v px:axli{ '}Ar
ak'k ox" ?—k B‘xﬁ vt A B&'k 2" Oxt 6%‘3 i
- _5‘__"4 axt _BA_T + n } _EJ %" 4?’ _ PC'E_% 51 { ! ,f
At 2% 2! )t 3 " Bl

[y

i{f PRl @&{p}f
3" ki 2P 3\ 2l qs

BA¢ p s i ) o b,
and ’_3_5 + o A7 is a mixed tensor of second rank, called the covarianz derivative of A with
51
&
v

respect o < and written 4 g

=2, Write the covariant derivative with respect to x° of each of the following tensars;
ik J b JRE
(2} Aﬁe, (by 47, (C)Ak- (d) Akl’ ey 4

mH

24 .
(ﬂ.) ‘I ‘k = _...ik: _— { &
g e

7 o
& 4 = +
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piy)
L My s} gkl s ) gkl i1 sk kY st [) ks
(e) Am'q = 39 " Ymag Ay — n Ays + 2 Apy + g5 Ay + o5 A

54. Prove that the covariant derivatives of (a) gﬁ

. (B) gjk, (e} 8; are zero.

@) g. . agjk s S K
. gjk,q 57 !-q. gsk kg gjs
%, .
= “ai‘? — [jg. k] — [kgj]l = 0 by Problem 45(a).
X
. 73 oy .
woo_ o il sk kY B
& g P 3 + 45 g%+ - £ il by Problem 45¢b).
7

@) Sk,q - 'é;? - {kq}ss * {gs}gk = 0 - {kg} * {qk} B 0

55. Find the covariant derivative of A;: Bim with respect to z°.

I m

X B(A Ry , '
J _In B s 7 _im s 7 _im
(Ak Bﬂ )’q B 7 B {”“J’} AS Bn a {“?} Ak BS

Ll
—
¢ ¢
Dfae <,

f
.
““Eﬂ
L
S ot

Wma.a.

+
i
"5}-—..
[ —

'

ar i
"
e v]
-y

B Fooim i om (
= Ak,qgﬁ + oA By

This illustrates the fact that the covariant derivatives of a product of tensors obey tuleg like those
of ordinary derivatives of products in elementary calculus.

b6, P Akm = Akm
. Prove (gjk n ). gjk n g -
Em ki km Em
4 } = 4 + 4 = 4
(gjk ),q gjk,q gjk 9 gjk X

since g, =0 by Prob. 54{a). In covariant differentiation, g, , gjk and 3] can he treated as constants.
' kg &gy k
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GRADIENT, DIVERGENCE AND CURL IN TENSOR FORM.

4

-3
57. Prove that divd = —?L{\/E A,

1
\/E 3x®

The divergence of Aﬁ is the contraction of the covariant derivative of A?, i.e. the contraction of

Aﬁ.q or A;b’.'b . Then, using Problem45{c),

&
cliw.rzﬂl’/Q = APQ = %—+{‘1}Ak
) " axk p
4" 9 B 34" 1 Vg B 1 °
- i Tnvpd = ot oA = = 504D
A iwF Vg AP Vg B
> oD
58. Prove that V2 = - —-gwg g .
Vg ox ax’
The gradient of T is gad & =VP = %}%. a covariant tensotr of rank one (3ee Problem 6(5)) de-
I
~ fined as the covariant derlvative of P, written $,-. The contravatiant tensor of rank one associated with
®, is A= g E: Then from Problem 57,
d d o)
Ve = aw (gk”—cb) - = =5 (Vg £ )
=5 Vg O Ot
BAﬁ BAq
59. Prove that Abq - Aq;b = L -
’ ' A7 dx?

wo-he (S - (G-lk) - 23
b T Cadb o - sy - Y s N )
9 Pq P P 09 P

This tensor of rank two is defined to be the curl of AP'

60. Exptess the divergence of a vectm'_fip in terms of its physical components for (a) cylindrical,
(b} spherical coordinates.

(a), For cylindrical coordinates x'=p, s?= ¢, 2®=z,

1 00
g = Jo p?o = p? and l/g_ﬁp (see Problem 30(z))
60 o0 1

The physical components, denoted by :‘Ip. A¢,, A, are given by

3
z

— 1 _ 41 Y st~ 2 - 3 _
Ap— guA—A, Aqb" g?z/l—pA, A—-Vg‘BSA—A
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Then R 3
X 1 B
divd” = = Vg A
ol \/E Bxk( )
_ 1.3 3 d
= 5 ap(pAp) + 20 (Ag) + = (P4 ]

(&) For spherical coordinates xl=r, x® =8, x8= ¢,

1 0 0
g = 0 2 0 = r*sin?f and Vg =:Zsinf  (see Problem 30(5))
0 o rsin?f

The physjcal components, denoted by A A | é are given by

=V A=A, A =V £ = h A, =V A = sl A
11 & 22 93

5=
Then
dy 4’ = ‘71;—:5—(1/‘&’%)
= Sing[—(ﬁsm@A) + %(r sinf 4,) + %(r%)]
- _12__._3_@-2,4?,) + j.é a%(sin@Ag) + ﬁ %

Express the Laplacian of $, V2®, in (a) cylindrical coordinates, (b) spherical coordinates.

{a) In cylindrical coordinates gl=1, g22=1/0%, g =1 (see Problem 35(s)}). Then from Problem 58,

o . 1 3 By 0P
Ve = v “Bxk(/g_ g "’—;r)
B
- %[iw 5,2 (1 o 5 ® __)]

2 1 3 od
= (Vg T 1T
ve Vg kU EE SR
.1 3 a3 3 3,1
- rzsmg[ar(r?sm@ +§§(sin6§~§)+§53n§a¢]
19,9 3 o 1 o

T F503) ¢ mmp spemlng ¢ ol 357
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INTRINSIC DERIVATIVES.

§2. Calculate the intrinsic derivatives of ea,g:h of thg follow_ing tensors, assumed to be differentiable
. . , . b g ik
functions of &: (e) an invariant®, (b) 4, () Ak' (d) Almn'

5& . dx’ 3P g iP
@5 - @*q d1 B dt de

] : i i : q
(b)gi = A‘f.’i’ff = BA_F{J}A‘S‘ d_xq = @.‘L.@}E +{‘I}A‘s£{.¥_
5t T dr BT gs dt AT de gs dt

, the ordinary derivative.

™ _ i ,
S S I R (s S CA U I SR AW i
© kg dr 37 kqgf s gs§ Tk t

J 7 _
@ inn oo [Pt s LA RV
: Imn,g g4 a7 Iq Ll mg{ “lsn
ik k i g
R WA DR ORI R Ll I - o
agf Ims gs§ Imn gs| Tlmn | di
Jk _ _
A ) g & s Ve st 7% gt
- 4 A 2= 2x
ds fgf Tsmn dt mqf lsn d ngf ms dt

i J
63. Prove the intrinsic derivatives of gjk, g“?k and bk atre zero,

5g, g & ; i )
it dx Og J o dx
=% = g, 8 . p, = = = =0 -— =208, _— = 0 byProblem 54.
St gjk,q) di ot ¢ o de TN

RELATIYE TENSORS.

P
64. If A, and Bm are relative tensors of weights w, and w, tespectively, show that their inner and
outer products are relative tensors of weight w, +w,.

By hypothesis,

P omalw g w3 E Y e
k dup ok T L Dnt xS OF U
S B O i A il IR
The outer product is Ak Bn = f 3P 37F 0T 25 %7 Aq Bt

a relative tensor of weight wq +wp. Any inner product, which is a contraction of the oufer product, is also
a Telative tensor of weight wy +wse.
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65. Prove that Vg is a relative tensor of weight one, i.e. a tensor density.

. — Ox’ axq
The elements of determinant gz given by transform according to g,, = - =&, gz .
# %9 ik " 3l o Be
. ; < - _ Bxﬁ axq L2 YT = [ va
Taking determinants of both sides, F = —é--: 5_——}3 g€ =J g o ¥Z=/[vg, which shows
./ %

that \/};: is a relative tensor of welght one.

66. Prove that dV = vg da? dx® ... dx’ is an invariant.

By Problem 65, dV = v dzl di? ... dx¥ = Vg J det dz? ... d©

%

:VEBE

AL d¥2 . dF = Vg dal dx? ... d¥ = 4V

From this it follows that if < is an invariant, then
f...f@d? = f...f@dy
7 14

for any coordinate systems where the integration is petformed over a volume in N dimensional space. A
similar statement can be made for surface integrals.

MISCELLANEOUS APPLICATIONS.

67. Express in tensor form (a) the velocity and (b) the acceleration of a particle.

k
{#) If the particle moves along a cnrve xk = xk(z) where ¢ is the parameter time, then vk = %Z-— is its ve-

locity and is a contravariant tensor of rank one (see Prohlem 9).

k 2k
(b) The quantity %—= %?xé_ is not in general a tensor ard so cannot represent the physical quantity

acceleration In all coordinate systems. We define the acceleration o as the intrinsie derivative of

&
the velocity, i.e. a® = ki which is a contravariant tensor of rank one.

ot

68. Write Newton’s Iaw in tensor form.

Assume the mass M of the particle to be an invarlant independent of time ¢. Then Mak= F%3 a
contravariant tensor of rank one is called the force on the particle. Thus Newton’s law can be written
-3

>
F* = Mab =y 2F
&t
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2 R k
9. Prove that a® = %”.{ = d;:; +{

r’f}dﬁﬁ
paf dt dt

Since vk is a contravariant tensor, we have by Problem 62 (5)

_Sv_k:ﬁv_k+kv$£=&2_xk+{k}v¢d_¥f
St de qs dt d? ap d¢
L S R
dt pey dr dt

70. Find the physical components of (z) the velocity and (&) the acceleration of a particle in cylin-
drical coordinates.

(@) From Problem &7 (), the confravariant components of the velocity are

d 1 L] d 2
=t _dp 4t _dg 0 4 dz
dt dt de dr
Then the physical components of the velocity are
— dxt do S dx® dab dx® dz

Ve, de T 4t 5228?1’03 and oo dr | dt

=
using g, =1, g,,=0", £33 = 1.

(by From Problems 69 and 49¢b), the contravariant components of the acceleration are

po fe i) e e dp i
T e 22§ dt dt de? P
s d" %2 N 2 ] dxt d+? N 2 ) dx® dxt dgqb + 2 do d
S 7> 12§ dr dr af & & & T D dr
2 2
d x° d z
and a?® = =2 = IR

Then the physical components of the acceleration are

Vig el = B pd? vVE, e = pd+2pd and Ve o =¥

where dots denote differentiations with respect fo time.

71. If the kinetic energy T of a particle of constant mass ¥ moving with velocity having magnitude v

isgivenby T = zMo? = é.-'lr;fgﬁq % %%, prove that
d, 9T oT
2ty — 22 = Ma
dt 3k 3k k

where ay denotes the covariant components of the acceleration.

since T = Mg P a'cq. we have

pq
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¢ dg. .
ST gy 99 pge, 2T e, ¥ aa LTy - g, 3+ 225 a7
N Ak R q d 0P q x
. e
Then i(aT)qE = M(g -fq+_?££j£q__1_ﬂ£fqu
dt 0P dn® kg o 2

o g P
= owfe w94 2 Br P e p g
kg S S -

= M(gkq %9 + [pg.s] 2P 19

_ J .y + T +H X - M r = 0y
’lfgky (x {pg x % gk*r a Ma,

using Problem 69. The result can be used to express the aceeleration in different coordinate systems.

72. Use Problem 71 to find the physical components of the acceleration of 3 particle in cylindrical
coordinates,

ds

i 2 2 2 2.
Since ds = d0%+ 0%+ 422, +° = o

¥ =02+ 52 and T = $Mo? = M+ P+ 2y,

From Problem 71 with ' =0, 22= ¢, 2=z we find

. ! d o
a = B-pd? 4 = 5(102@5)- az = z

Then the physical components are given by

By ay i - %

L=, = o Fopdh LA 2dy
q v@; V/ges P

since g_=1, g, = p°, g,, = 1. Compare with Problem 70.

73. If the covariant force acting on a particle is given by Fk - oF where V(x?, ..., x};) is the

dxk
. d oL [:}2
potentizl energy, show that ——( - —=— =) where L = T— V.
di a:f:k) Dxk
. SL _ or . . .B
From L =TV, Ha_k = é__k since V is independent of *™. Then from Problem T1,
X
d . or a7 av d oL oL
(==} - — = Ms, = F, = -~ =L apd — (==Y - == = 9
dE B:Ek) Ax k k Dk dr  Jik Dk

The function L is called the Lagrangean. The equations involving L » called Laegrange’s equations,
are important in mechanics. By Problem 50 it follows that the results of this problem are equivalent to the

ta
statement that a particle moves in such a way that f L dt is an extremum. This is called Hamilton's
121

principle.
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5.
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Express the divergence theorem in tensor form.

Let Ak define a temsor fleld of rank one and let ¥, denote the outward drawn unit normal toany point
of a closed surface S bounding a volume V. Then the divergence theorem states that

e ff s

For N dimensional space the triple integral is replaced by an N tuple integral, and the double integral by
an N —1 tuple integral. The invariant 4 % is the divergence of Ak (See Problem 5%7). The invariant
Ak Vk is the scalar product of A'}e and 14, an’alogous to A-+n in the vector notation of Chapter 2.

We have been able to express the theorem in tensor form; hence it Is true for &ll coordinate systems
since It is true for rectangular systems (see Chapter §). Also see Problem 86. '

Express Maxwell’s equations (z) divB =0, (b) divD =47p, (¢) VXE = — cl ? , (d) VxH = %T—l
in tensor form. !

Define the temsors Bk, D%, Ek' Hk' * and suppose that £ and ¢ are invariants. Then the equations
can be written

&
{ay B 5= ]
)
(6 D , = 4P
J g
(c)uéjqu = ...l?.B_ or €jqu = l?._ﬂ__
k. ¢ O kg I
@ -y - at”? o Mg = _ 4_71{
k.g c . E,q c

These equations form the basis for electromagnetic theory.

_ pn . P .

(a) Prove that Aﬁ.qr — Aﬁ,rq = R;&qr A, where A¢ is an arbitrary covariant tensor of rank cne.
= — n X

(b} Prove that qur is a tensot. (c) Prove that Rf;qfrs Eps qu?’ is a tensor.

aAp . ,
_ - R B i
(a) Aﬁ’-q" - (Aﬁaq),?’ B axr {Pr} Ajrq {gr} Aﬁ:j
.3 Eip_{f},l. - {0 Eﬁ-_{k}A
N W pej 71 o\ B ia
. b3
L A N A 204Y
Bt 0xl o pgl 7 e o pr Bl rl g k

E-T
™
H
e,
5~
e,
T

T
kq.‘t};h'
I
o,
E Ty
e ¥
H:b.
\-_-/

By interchanging ¢ and r and subtracting, we find



1.

8.

9.

Bé.

31.
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_ filSs 3 fi _fif* 3§
Yogr = fprg T {P,}{M}Ak N {Pq} 4 {Pq}{f‘r}Ak T {Pf}Af
k i I k i 3 fi
{PT}{kQ}Aj - é?{m}Aj B {Pq}{’f*}Aj ! 52‘7{”}‘4}'

J
R, A
par 7J

i fRYfIV _ B i
g+ O - 24

Replace j by a and the result follows.

1]

18 I

St

7 . n
. _ . . . . A1
(b} Since Aﬁ.q?' Ap,rq iz a tensor, qu?_ A, Is a tensor; and since A, is an arbitrary tensor, Rgbq'.r is

e tensor by the quotlent law. This temsor is celled the Riemann-Christoffel tensor, and is sometimes

vartl 7

. n .
written R'{)qr’ qu"r" or simply qur'

(¢} R{;qrs T g R;qr is an associaled tensor of R;q»r and thas 1s a tensor. It is called the coveriant

curvature tenser and is of fundamental importance in Einstein's generol theory of relativity,
4 Y Y

SUPPLEMENTARY PROBLEMS

Answers to the Supplementary Problems are given at the end of this Chapter.

Write each of the following using the summation convention.

(@) apx*x® + a,x%x% + L, + alh,:ac“rx3 (e} AfB1 + Agf}2 + Ang + o 4+ A;BIlr
2], 29 28 2K
® 4B, + 4% B, + 4%+ .. + 473y @ g%g tg%%g, + 8%, + e,

121 12 201 099
(e} Byy" + By + Bp + B

Write the terms in each of the following indicated sums.

IR~ N kb i oxd 3k
(a)axk(Vg_A).N—z %) 4 By C;u N=2 (¢}

O k ot it

What locus is represented by akxkxk =1 where xk, k=1,23, ..., N are rectangular coordinates, “ are
positive constants and N=2,3 or 4 ?

xq= bp.

If N =2, wtlte the system of equations represented by o b

., ik _
Write the law of transformation for the tensors (a) A;f , () B:,;J » () Gy, WYA4, .
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82,

&3.

B4.

85.

86.

87.

88.

89.

80.

91.

92.

93.

94.

95.

96.

a1,

98.

99.

TENSOR ANALYSIS

Determine whether the quantities B(j,k,m) and C(j,k,m,n) which transform from a coordinate system
x" to another x° according to the rules

ad ok BEr L - %P 0 WP WS
= o B( lkl ) (b) C( afIar-S) = - C(}rk;mpn)
o e P ) 3z ORT N

are tensors. If so, write the tensors in suitable notation and give the rank and the covariant and contra-

@) Bip,q.7

. variant orders.

How many components does a tensor of rank 5 have in a space of 4 dimensions ?

Prove that if the components of a tensor are zero in one coordinate system they are zeto in all coordinate
systems,

Prove that if the components of two tensors are equal in one coordinate system they are equal in zll co-
ordinate systems,

xR dv®
Show that the velocity de = ¢ of a fluld is a tensor, but that s is not & tensor.

Find the covariant and contravatiant components of a tensor in (z) cylindrical coordinates p,(ﬁ),z .
(b) spherical coordinates r,&, ¢ if its covariant components in rectangular coordinates are 2xv-z, 2y,

¥z,

The contravarlant components of a tensor in rectanguler coordinates are yz, 3, 2x+y. Find its covariant
components in parabolic cylindrical coordinates. )

£ o gs A
Evalnate () be . (B) 8y &g 4%, @ 5 8 83, (@) & Sr s ¢,

o s
If A'rq is a tensor, show that Aﬁ is a contravariant tensor of rank one.

Show that Sjk = {; ;: z is not a covariant tensor as the notation mipght indicate.
a qu Ep 4
A = — =

If y P 461‘.‘ prove that A oW Ai?
% %’ B

If 4, = qu = As prove that 4, E?»” 7&-; A,

2

P o

If ¢ is an invariant, determine whether is a tensor.

&
If Ag and Br ate tensors, proye that Af'; Bf and Aj Bq are tensors and determine the rank of each.

?q

' . ba qp g 99,
fhow that if Ars is a tensor, then A*rs + Asr is a symmetric tensor and ’41*5 - As'r is a skew-gymmetric
ensor.

Pq by By

If 4 and B,  are skew- symmetric tensors, show that O, = A" B, is symmetric,

1f a tensor is symmetric (skew-symmetric}, ate repeated contractions of the tensor slso symmetric (skew-
symmetricy ?

Prove that A;bq xp x7 =0 if qu is a skew-symmetric tensor,
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101.

102.

103.

104.

103.

166,

107.

108.

109.

1140,

111,

112,
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What is the largest number of different components which a symmetric contravariant tensor of rank two
can have If (eYN=4, () N=67? What is the number for any value of ¥ ?

How many distinet non-zero components, apart from a difference in sign, does a skew-symmetric covariant
tensor of the third rank have ?

p

It Afg is a tensor, prove that a double contraction yields an invariant.

Prove that a necessary and sufficient condition that a tensor of rank R become an invariant by repeated
contraction is that R be even and that the number of covariant and contravariant indices be equal to R/2.

rs
¥ A, and B~ ate tensors, show that the outer product is a tensor of rank four and that twa inner prod-
ucts can be formed of rank two and zero respectively.

&
I A(p.q) Bq = C?‘) where Bq is an arbitrary covariant fensor of rank one and € is a contravariant tensor
of rank one, show that A(p,7) must be a contravariant tensor of rank two.

Let A‘p and Bq be arhitrary tensors. Show that if AT'LJ Bq, C{p,q) is an invariant then C(p,q) is a tensor

]
which can be written C?é .

Find the sum S$=4+8, difference D= A—R, and products P=AR and (= BA, where 4 and B are the
matrices

3 -1 4 3
4 = =

2 0 1 1 -1 2
by 4 = [—-1 —~2 217, B = 3 2 —4
~-1 3 -1 -1 -2 2

Find (34—2B)(24—R), where 4 and B are the matrices in the preceding problem.

(a) Verify that det (4B) = {det 4} {det B} for the matrices in Problem 107.
() Is det (4B} = det (BA) 2 '

-3 2 -1

a3 -1 2
Let 4 = . B = 1 —
(4 2 3) 3 2

21 2
Show that (a) AB is defined and find it, () B4 and A+8 are not defined.

2 -1 3 x 1
Find x, ¥ and 2z such that 1 2 —4 ¥ = —3
-1 3 =2 z i}

'fhe inverse of a square matrix A, written 41 is defined by the equation A4~! = I, where [ is the unit
matrix having ones down the main diagonal and Zeros elsewhere.

1 -1 1
Pind A7 i (@) A4 = (_Z _i) , &y 4 =12 1 -1
1 -1 2

18 A™*4 =7 in these cases ?
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113.

114.

115.

116.

117.

118,

115.

120.

121.
122.

123.

124.

1235,

126.

127.

128.
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2 1. -2
Prove that 4 = 1 =2 3 has no loverse.
4 =3 4

Prove that (AB)‘i = B~*4~', where 4 and B are non-singular square matrices.

Express in matrix notation the transformation equations for
(@) a contravariant vector (b) a covariant tensor of rank two (¢) a mixed tensor of tank two,

2 =2 .
Determine the values of the constant A such that AX=>X, where 4 = (__3 1) and X is an arbl-

trary matrix. These values of A are called characteristic values or eigenvalues of the matrix 4.

The equation F(A)=0 of the previous problem for determining the characteristic values of a matrix A Is
called the characteristic equation for A. Show that F(4}=0, where F(4) is the matrix obtained by re-
placing A by A in the characteristic equation and where the constant term ¢ is replaced by the matrix cf,
and ¢ is a matrix whoge elements are zero (called the null matrix). The result is a special case of the
Humiltgn-Cayley theorem which states that a matrix satisfies its own characteristic equation.

Prove that (./IB)T = BTAT .

Determine the metric tensor and conjugate metric fensor in
{a} parabolie cylindrical and (b} elliptic cylindrical coordinates.

Prove that under the affine transformation =7 = a?’xﬁ + br, where o and };T are constants such that

a a; = 8{), there is no distinction between the covariant and countravariant components of a tensor, In

-
the special case where the transformations are from one rectangular coordinate system to another, the

tensors are called cartesion tensors.
Find g and gjk corresponding o ds? = 3¢dx” + 2(dx®7 + 4(ds®Y — sdxldiP.

& :
If A = gﬂ%iq- , show that Aj = gjk Ak and conversely.
o

Express the relationship between the associated tensors

P90 477 e 4P and 4 4 gt
@) A7 and Aj , (B} A-q and qul' (e) Am and A"I'

Show that (e) A},;q Bﬁ_s = Aﬁq B{J#’s , B A.ﬁ.qr BD. - ‘44;??«8” = A?;q‘r Bi . Hence demonstrate the gen-

eral result that a dummy symbol in 2 term may be lowered from its upper position and reised from its
lower position without changing the value of the term.

e 4P P _ L AL L o
Show that if A'q*r = B-qcr' then A:bqr = qu C?, and A{; = B¢ € . Hence demonstrate the result

that a2 free index in a tensor equation may be raised or lowered without affecting the validity of the equa-
tion,

Show that the tensors g, , gpq and 8{{7 are associated tensors,
pq ¥

7 g TR TP
Frove (a) Zp o] o AR PQBL.

b B % % 20

If A?5 is a vector fleld, find the corresponding unit vector.
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130.

131.

132.

133,

134,

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.
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Show that the cosines of the angles which the 3 dimensjonal unit vector U ¢ make with the coordinate

g U L2
curves are given by L ' -2 ' =
£ oo £an

Determine the Christoffel symhols of the firsf kind in (a) rectangular, (&) cylindrical, and {(¢) spherical
coordinates.

Determine the Christoffel symbols of the first and second kinds in (a) parabolic cylindrical, (B) elliptic
cylindrical coordinates,

Find diffetential equations for the geodesics in {a) eylindrical, (&) spher_ica.l coordinates,
Show that the geodesics on a plane are straight lines.
Show that the geodesics on a sphere are arcs of great clreles.

Write the Christoffel symbols of the second kind for the metrie
ds? = (@dx)* + [ — ) @
and the comesponding gecdesic equations.
Write the covarlant derivative with respect to xq of each of the following tensors:
d i gkl ik

& M Y
{a) AI » (B Alm' {e) Aklm. » () Am . (&) I{l%ﬂ -

Find the covariant derivative of (a) gjk Ak, &) AJ Bk , (€} S; Aj with respect to 9.

Use the relation 4° = gJ‘r R A, to obtain the covarlant derivative of Aj from the covariant derivative of 4 e

If & is an invariant, prove that P, b= CID.qf;. L.e. the order of covarient differentiation of an invariant
15 immaterial.

bgr

Show that E{)q'r and € ¢ are covariant and contravariant tensors respectively.

Express the divergence of a vector Ap in terms of its physical comporents for (a) parabolic eylindrical,
{5y paraboloidal coordinates,

Find the physleal components of grad < in (a) parabolic cylindrical, (b} elliptic cylindrical coordinates.
LA,
Find V' P in parabolic cylindrical coordinates.
f
Using the tensor notation, show that (@) div curl A’ = 0, (5} curl grad P = 0.
Calculate the infrinsic derivatives of each of the following tensor fields, assumed tc be differentisble

functions of ¢ :'k .
(@) Ay, () A7%, (e Aj B®, td) c,bdi where ¢ 1s an inveriant,

s . k b i r
Find the initinsic derivative of (a) gjkA , (B Sk Ay (@) £ 8y 4 .

o4
4 . g _ o P q
Prove 5 (z A?5 Aq) = 2g Af) _8;— .
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148. Show that if no external force acts, a moving particle of constant mass travels along a geodesic given by

149,

150.

151,

152,

153.

154.

155.

156.

157.

158.

159,

16G.

161.

162.

163,

164.

3dxzb
S(ds)_o

Prove that the sum and difference of two relative tensors of the same weight and type i3 also a relative
tensor of the same weight and type,

pq
I A,

is a relative tensor of weight w, prove that g-w/?2 Aﬁq‘ is an absolute tensor.

If A(p.q) qu = C_, where B ® 45 an arbitrary relative tensor of welght w, and C is a known relative
tensor of weight a,, DProve that A{p,q) is a relalive tensor of weight wo—uwy. Thi.s is an example of
the quotient law for relative tensors.

Shew that the quantily G(j,k) of Solved Problem 31 is a relative tensor of weight two.

Find the physical components of (a) the veloclty and (b) the acceleration of a particle in spherical co-
ordinates.

Let 4" and B” be two vectors in three dimensional space. Show that if A and u are constants, then
f = KAV+,u.Br is a vector lying in the plane of A" and B”. What is the interpretation in higher dimen-
sional space ?

Show that o vector normal to the swface &¢x!,x% 2% = constant is given by AP - gbq % Find the
corresponding unit normal, ¥

S
The equation of continulty is given by V- (crvy + = 0 where o is the density and v is the velocity of
a flid. Express the equation in tensor form.

Express the continuity equation in (@) cylindrical and {b) spherical coordinates.

Express Siokes' theorem in tensor form.

Ptove that the covariant eurvature tensor quﬂ is skew-symmetric in (z}pandq, (b)rands, {e)gands.
Frove Rpgrs = Regpg.

Prove (a) Rﬁ'qfs + R;‘)sqr + Rﬁrsq = 9,
@) Rpgrs + Rrgps + Rpapg + Rpspg = 0.

Prove that covariant differentiation in & Euelidean space is commutative. Thus show that the Riemann-
Christoffel tensor and curvature tensor are zero in a Euclidean space.

»
Let 1"?ﬁ gj be the tangent vector to curve € whose equation is x¢> = x_p(s) where s is the arc length,
. q
(e) Show that g TP 1= 1, (b) Prove that g TP §T— = 0 and thus show that A9 = 1 ar” is a unit
2] bl S5 K Bs

aNT
normal to € for suitable «. (c) Prove that Ogl is crthogonal to Nq.
5

With the notation of the previons problem, prove:

(a) ngqu=0. (b g 75§—N—~—K ot T’b(—+ KT) 0.

Pq

r
(Sl + « Ty is & unit vector for suitable 7 orthogonal to both Tp and Nq.

Hence show that B7 = 1
T Bs
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165. Prove the Frenet-Serret formnlas

o $ b
%T - oW, BBN -8kt 58‘3 -~
5

where Tp, N'b and Bij are the unit tangent, unit normal and unit binormal vectors to €, and < and T are
the curvature and torsion of .

166. Show that ds? = cf(abc“)2 — dx” dx® (N=3) is invariant under the linear (affine) transformation
Fl o= vt —vaty, %2 =2, 3% - =2, ® = Yt ~ =1

where ¥,5,c and v are constants, B=v/e and 7y = (1—,82)"1/2 . This is the Lorenrz transformation
of special relativity, Physically, an observer at the otigin of the %t system sees an event occwrring at
positlon 1,22 29 af time x4 while an observer at the origin of the %% system sees the same event oceur-
ring at position £',%%%° at time %*. It is assumed that (I) the two systems have the x* and #! axes
coincident, (2) the positive x” and x® axes are parallel respectively to the positive %° and =° axes,

(3) the %* system moves with velocity » relative to the x* system, and {4) the veloecity of light ¢ is a
constant, :

167. show that to an observer fixed in the x% (z%) system, a rod fixed in the %% (x%) system lylng parallel to
the %'(x') axis and of length L in this system appears to have the reduced length LV1—B3% This
phenomena is called the Lorentz-Fitzgerald contraction.

ANSWERS TO SUPPLEMENTARY PROBLEMS.

k.2 2 ,j k 2 - P2
7. (@) a5 ATB; () 4B @ g7 g, N=4 (o) B} N=2

1

fs 1 3 2 2 3 ; . ,
UG~ LRSI O A
%) 411815 c, + Aglgf% L. chi b o422 Bf c, dx1 YEm Dx2 O o TEm

79. Ellipse for ¥ =2, ellipsoid for ¥#3, hyperellipsoid for ¥ =4,

80 eraat + Gipx® = By
C Vamat 4 ame® = 3,
A . B D"
8L (@) A, = P e (e} Cpy = oF 3A Con

9 o7 %7 o o ik ~ 2
®) B % I% OF ot @y 4, =
s ot Bwd Bk OEs " 4 a'p "

L]

1
N

82. {n) B(j,k,m) is a tensor of rank three and is covariant of order two and contravariant of order one. It can

be written Bjk' (&) C(j,k, m,n) is not a tensor.

83. 4= 1024
87. (@) 20c08” P — zcosp + pPOsin?@ cos2,

—20°sin @ cos P + prsingd + ptsing cos®,
Pz sind,
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by 2r sin®¢ cos®@ -~ rsind cosd cosd 4+ Psin*d si® b cos?P + Zsind cos?6 sing,
2r2sind cos # cos?h — rPcos?d cosp + r*sin®f cos b sin® ¢ cos?d
~ r#sin*d cosF sing,
— 2/ 5in’5 sing cosd + Zsin® cosf singd + *sin*S sing cos®
3 br P )
88. w’vz + 3v, 3u — uwr’z, u®+wuy -7 89. (&) B; LBy AT, (@) bs , Y N
94. It is not a fensor. - 93. Rank 3 and rank 1 respectively. 98. Yes.
100, (@) 10, (b)Y 21, {cy N(N+1)/2 101, N(N—13(N-—-2}/8
7 2 -1 —4 14 10 18 8
@) S = . D= . P , -
107 @ (0 3) {4 5) (a 2) ¢ (—8 ~2)
3 -1 3 1 1 =1 1 —4 6 1 8 —3
by § = 2 0-2{, o= —4 —4 6], P o= -8 -7 10 ], Q= g —16 11
-2 1 1 0 b -3 9 9 —16 —2 10 —7
3 —16 20
=52 — i -6 5 3
108. {a) ( 104 22) (b} ( 9 183 —136) I10. ( 4 19 2)
—61 =135 132
. 5 1 1/2 1/3 0
111, x=—1, vy=3, z=2 112, (ay . {(by {—5/3 1/2 1 }. Yes
5/2 3/2
-1 0 1
e w o w\ [p
Sxt G’ Ba?
ik d5?  or® o3t 2
115. 2] A = _ o= il A
@ Il o
4° 71 ox® d° 43
dxt Ox? 3P
- o+ = Ot 9x”  P cxl 9xl O?
A1y dsp Asg 1 3%t 3 Ay Are Asa 3 2 o5
(b) Apr Aon Al = ot Ox? 0% A A A Ox” 9 9x2
o e e % O o prETEIl R W W
- _ 1 2 s a 3 3
Asy Agp Ame Bi LA Agy Anp Az LA
oFF  ox®  ox® ¥t oOx? 9%°
4 —1 — =1 yed 1 1 1 1
it il e gy op Ox ot
gzl Ox”  Ox® oEr 9% oRf
—= —0 —z _ BE? DE? e 2 2 =2 a2 a? By
N B I e R A
g - — =3 -5 =1 s a a
L oA el -l B VA Eaye’ s
dxt Sx? y® ' T og2 Pl
3, .3 1
b+ ) 0 IR 0
s 1
116. A = 4, —1 119. (=) 0 u?+v? 0 !
0 0 1 0 0 1



TENSOR ANALYSIS 215

1

2 2 i 0 0 0
a“sinh*“y + sm%) 0 aXsinniu + Sinzv)
1
Dy i 2
5 0 z*(sinh“x + sin‘e) 0 . 0 EsinhT T 51w
0 0 1 0 0 1
. fa/3a 0 1
ik
121, g =6, (g } = 0 1/2 0
i 0 1
Pe_ pi 9 Pr pi ol ki ri .k
= g , = — A = . A
123. (@) 4 g Aj . (D) A.q £ K quz {c) b ggbqukg ]
P P
A A
128. ar
VP Ve, 4P 4%
4 Epq

130. (a) They are all zero.
#y [221) =—p, [12,2] = [21,2] = p. All others are zero,
) [22,1} =—r, [23.1] == sin?8, [92,2] = —2sinF cos &
[21,2] = [12,2] =-, [31.3] = [13,3] = r sin?@
[22,3] = [23,3] = 2sin® cos &. All others are zero.

121. (@) [11,1) ==, [22,2]=v, [11,2] = ~o, [22,1) = —u,
(12,11 = [21,11 = », [21,2]= [12,2] = u.

i _ I 2 - v 1 - 2 _ v

1l w2t 122l w2+2° 122 W2rer ' 11 T

1 = y =2 . 2 = 2 = —~— . All others are zero.
21 12 u? + 2 21 12 u? + o2

) [11,1] = 202sinhuecoshz, [22,2] = 2s2sinveosv, [11,2] = —22sinv cosv
[22,1) = —2e2sinh & cosh w, [12,1] = [21,1] = 2a2 sinv cosv, {21,2]=[12,2]= 20%sinhu coshu

1 . sinh e coshu 2 } _ _ sinv cosv { 1 } . —8inbu coshu
11 sinhu + sinv 22 sinhZu +siny 22 sinh?y + sin®y |
2 { _ —siny cosv 1 _§1__ sinvecosw

11 sinh2x + sin?e 21 12 ginh?y + sin®v '

2 2 sinh « coshu
= = —me T2, All others are zero.
{21} {12} sink?u +sin®y

2o doh 2 &b 2 dp dd iz _
B @A = et om0 @t
d*r 48 5 o, 4P 4
TS R . - P A
By~ — Y - i H(=) 0
vy
?-‘T-—Q+g£d—6—sin9cos€(5@)2 = 0
ds? P ds ds ds
2
Q+E§E@+zcot9§§_§9§ =

ds? rods ds ds ds
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141.

142.

143.

145.
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o G e ()
22 o1z 21 @ — @ 22 02—
2.1 2 7.2 i 1 .2 o b
d_x xi(di)Q =0, é { n % di di + _rz_xu____g (di)Q = g
ds2 ds ds” (a1 —e (x9° ds  ds (2% = xly ds
ik
ik EZN k ; s
(@y A - P 5 43 + i ASk . k 4
L o’ Igf =5 gs § 1 gsf 1
. ik
. a4 3 E ; ]
ik ; ik F ik L s
&y A SRR S S VS B U AR S G A
i, g éxq Iq £ my Is g5 im qs Tan
J
. oA s . . i
7 klm § J 8 J 8 I i 5
A = - A - — A
(e klm,q e {kq} slm {iq } 4?&9??1 {mq} 43215 ! {qs} klm
~ fEl
3Bl A, s ikl : Bl k isi I ks
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Absolute derivative, 174
Absolute motion, 53
Absolute tensar, 175
Acceleration, along a space curve, 35,39,40,50,56
centripetal, 43, 50,53
Coriolis, 53
in ¢ylindrical coordinates, 143, 204
in general coordinates, 204, 205
in polar coordinates, 56
in spherical coordinates, 160, 212
of & particle, 38,42, 43, 50, 52, 84, 203, 205
relative to fixed and moving observers, 52,53
Addition, of matrices, 150
of tensors, 169
Addition, of vectors, 2,4,5
associative law for, 2,5
commutative law for, 2,5
parallelogram law for, 2,4
triangle iaw for, 4
Aerodynamics, 82
Affine transformation, 59, 210, 213
Algebra, of matrices, 170
of vactors, 1,2
Angle, between two surfaces, 83
between two vectors, 19, 172, 190
solid, 124, 125
Angular momentum, 50, 51, 56
Angnlar speed and velocity, 26, 43,52
Arbitrary constant vector, 82
Arc length, 37, 56, 136, 148
in curvilinear coordinates, 58, 148
in orthogonal curvilinear coordinates, 136
on a surface, 56
Areal veloeity, 85, 85
Area, bounded by a simple closed curve, 111
of ellipse, 112
of parallelogram, 17, 24
of sutface, 104, 105, 162
of triangle, 24, 25
vector, 25, 83
Associated'tensors, 171, 190, 191, 210
Asgociative law, 2, 5, 17

Basge vectors, 7, 8, 136
onitary, 136

Binormal, 38, 45, 47, 48

Bipolar coordinates, 140, 160
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Box preduct, 17
Brahe, Tycho, 86

Calculus of variations, 173
Cartesian tensors, 210
Central foree, 56, 85
Centripetal acceleration, 43, 50, 53
Centroid, 15
Chain rule, 77, 177, 179
Characteristie equation, 210
Characteristic values, 210
Charge density, 126
Christoffel's symbols, 172, 182~195, 211
transformation laws of, 172, 193, 194
Cirealation, 82, 131
Circumcenter, 33
Clockwise direction, g9
Cofactor, 171, 187, 188
Cellinear vectors, 8, 9
non-, 7, 8
Column matrix or vector, 169
Commutative law, 2, 5, 16, 17
Component vectors, 3, 7, 8
rectangular, 3
Components, contravariant, 136, 156, 157, 1687, 168
covariant, 136
of a dyad, 73
of a tensor, 157, 167, 168
of a vector, 3, 136, 1568, 157, 158, 187
physical, (see Physical components)
Conductivity, thermal, 126
Conformable matrices, 170
Conic section, 87
ConjJugate metric tensor, 171, 188, 189
Conjugate tensors, 171
Conservation of energy, 94
Conservative field, 73, 83, 90, 91, 93
mation of patticle in, 93, 94
necessary and sufficient condition for, 90, 91
Continnity, 36, 37
equation of, 67, 126, 212
Contraction, 189, 181, 182
Contravariant components, 138, 156, 157, 187, 168
of a tensor, 157, 167, 168
of a vector, 136, 156, 157, 167
Contravariant tensor, of first rank, 157, 167
of second and higher rank, 168
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Contravariant vector, (2e¢e Contravariant compo-
nents of a vector)
Coordinate curves or lines, 13b
Coordinates, curvilinear, {see Curvilinear coordi-
nates)
Coordinate surfaces, 135
Coordinate transformations, 58, 59, 76, 135, 168
Coplanat vectors, 3
necessary and sufficient condition for, 27
non-, 7, 8
Coriglis acceleration, 53
Cosines, direction, 11, 58
law of, for plane triangles, 20
law of, for spherical triangles, 33
Counterclockwise direciion, 89
Covariant components, 138, 157, 158, 187
of a tensor, 167, 168
of a veetor, 136, 157, 158, 167
Covariant curvature tensor, 207
Covariant derivative, 173, 197-199, 211
Covariant tensor, of first rank, 158
Covarlant vector, (see Covariant components of &
vector)
Cross-cut, 113
Cross product, 16, 17, 22-26
commutative law failure for, 16
detetminant form for, 17, 23
distributive law for, 16, 22, 23
Cuble, twisted, 55
Curl, 57, 58, 87-72
in eylindrical coordinates, 153, 154
in orthogonal curvilinear eoordinates, 137, 150
in parabolic cylindrical coordinates, 161
in spherical coordinates, 154
integral definiticn of, 123, 152, 153
invariance of, 81
of the gradient, 58, 69, 211
physical significance of, 72, 131
tengor form of, 174, 200
Current density, 126
Curvature, 38, 45, 47, 113
radius of, 38, 45, 48, 50
Riemann-Christoffel, 206
tensor, 207
Curve, space, {see Space curves)
Curvilinear coordinates, 135-164
acceleration in, 143, 204, 205, 212
arc length in, 56, 136, 148
definition of, 135
general, 148, 156-159
orthogonal, 49, 1358
surface, 48, 49, 56, 155
volume elements in, 136, 137, 159
Cyceloid, 132

Cylindrical coordinates, 137, 138, 141, 142, 160, 161

arc length in, 143
Christoffel’s symbols in, 185, 211
conjugate metric tensor in, 189
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Cylindrical coordinates,
continuity eguation in, 212
curl in, 153, 154
divergence in, 154, 200, 201
elliptie, {(see Elliptic cylindrical coordinates:
geodesices in, 211
gradient in, 153, 154
Jacobian in, 181
Laplacian in, 153, 154, 201
mettic tensor in, 187
parabolie, (see Parabolic cylindrical coordinates)
velocity and acceleration in, 143, 204, 205
volume element in, 144, 145

V, {see Del)
, (see Laplacian operaton
Del (V). 57, 58, (see alzo Gradient, Divergence and
Curl)
formulas involving, 58
integral operator form for, 107, 123
invariance of, 81
Delta, Kronecker, 168, 179, 180, {see also Kron-
ecker's symbol)
Densiy, 126
charge, 126
current, 126
tensor, 175, 203
Dependence, linear, 10,15
Derivative, absolute, 174
covariant, 173, 197-16%, 211
directional, 57, §1-63
intrinsic, 174, 202, 211
Derivatives, of vectors, 35-56
ordinary, 35, 36, 38-43
partial, 36, 37, 44, 45
Descartes, folium of, 132
Determinant, cofactor of, 171, 187, 188
cross product expressed as, 17, 23
curl expressed as, 57, 58
differentiation of, 41
Jacobian, (see Jacobian)
of & matrix, 170, 209
scalar triple product expressed as, 17, 26, 27
Determinants, multiplication of, 159
Dextral system, 3
Diagonal of a square matrix, 169
Difference, of matrices, 170
of tensors, 169
of veciors, 2
Differentiable, scalar field, 57
vector field, 57
Differentiability, 36, 37
Diffetential equations, 54, 104
Differential geometry, 37, 38, 45-50, 54-56, 166, 212-13
Differentials, 37
exact, (see Exact differentials)
Differentiation of vectors, 35-568
formulas for, 36, 37, 40, 41
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Differentiation of vectors,
order of, 37, 69
ordinary, 35, 36
partial, 36, 37
Diffusivity, 127
Directional derivative, 57, 61-63
Direction cosines, 11, 58
Distance between two points, 11
Distributive law, 2
for cross products, 16, 22, 23
for dot products, 16, 18
for dyadics, 74
for matrices, 170
Div, (see Divergence)
Divergence, 57, 64-67
in curvilinear coordinates, 137, 150
in eylindrical coordinates, 153, 200, 201
in parabolic cylindrical coordinates, 161
in spherical coordinates, 161, 200, 201
invariance of, 81
of the curl, 58, 69, 70, 211
of the gradient, 58, 64
physical significance of, 66, 67, 119, 120
tensor form of, 174, 200, 201
theorem, {see Divergence theorem)
Divergence theorem, 106, 110, 111, 115-127
expresased in wards, 115
Green’s theorem as a special case of, 106, 110, 111
physical significance of, 116, 117
proof of, 117, 118
rectangular form of, 116
tensor form of, 206
Dot product, 16, 18-21
commutative law for, 16, 18
distributive law for, 16, 18
Dummy index, 167
Dyad, 73
Dyadie, 73-75, 81
Dynamics, 38, {see also Mechanies)
Tagrange’s equations in, 196, 205
Mewlon's law In, (see Newion’s law)

Eccentricity, 87
Eigenvalues, 210
Einstein, theory of relativity of, 148, 207, 213
Electromagnetic theary, 54, 72, 206
Element, line, 170, 189-189
volume, 136, 137, 1590
Elements, of a matrix, 169
Ellipse, 63, 139
area of, 112
motion of planet in, 86, 87
Ellipsoidal coordinates, 140, 160
Elliptic cylindrical coordinates, 139, 155, 160, 161,
211
Energy, 94
conservation of, 94
kinetic, 94, 204

INDEX

Energy, )
potential, 04
Equality, of matrices, 170
of vectors, 1
Equilibrant, 6
Euelidean spaces, 170
N dimensional, 171
Euler’s eguations, 196
Exact differentials, 83, 93, 111
necessary and sufficient condition for, 93
Extremum, 196

Fietitious forees, 53
Field, (see Scalar and Vector field)
conservative, (see Conservative fieldy
irrotational, 72, 73, 90
sink, 13, (see also Sink)
solenoidal, 67, 73, 120, 126
source, 13, (see also Source)
tensors, 168
vortex, 72
Fized and moving systems, observers in, 51-53
Fluid mechanics, 82
Fluid motion, 66, 67, 72, 116, 117, 125, 128
incompressible, 67, 126
Fiux, 33, 120
Force, central, 56, 85
Coriolis, 53
moment of, 25, 26, 50
on a panticle, 203, 205
tepulsive, 85
universal gravitational, 86
Forces, fictitious, 53
real, 53
resultant of, 11
Frames of refarence, 58, 166
Free index, 187
Frenet-Serret formulas, 38, 45, 213
Fundamental quadratiz form, 148
Fundamental tensor, 171

Gauss' divergence theorem, (see Divergence theorem)
Ganss’ law, 134
Gauss’ theorem, 124, 125
Geodesics, 172, 173, 106, 197, 211
Geometry, differential, (see Differential geometry)
Grad, (see Gradient)
Gradient, 57, 58, 59-68, 177
in cylindrical coordinates, 153, 154
in orthogonal curvilinear coordinates, 137, 148, 149
in parabolic cylindrical coordinates, 161, 211
in spherical coordinates, 161
integral definition of, 122, 123
invariance of, 77
of a vector, 73
tensor form of, 174, 200
Graphical, addifion of vectors, 4
representation of a vector, 1
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Gravitation, Newton’s universal law of, 86
Green’s, first identity or theorem, 107, 121

second identity or symmetrical theorem, 197, 121

theorem in space, {see Divergence theorem)
Green’s theorem {n the plane, 106, 108-115

as special case of Stokes’ theorem, 106, 110

as speclal ¢case of the divergence theorem, 1086,

119, 111
for multiply-connected regions, 112-114
for simply-connected regions, 108-110

- Hamilton-Cayley theorem, 210
Hamilton’s principle, 205
Heat, 126, 127
specific, 126
Heai equation, 126, 127, 161
in elliptic cylindrical coordinates, 155
in spherical coordinates, 161
Heat flow, steady-state, 127
Helix, citeular, 45
Hyperbola, 87
Hyperplane, 176
Hyperzphere, 176
Hypersurface, 176
Hypocycloid, 132

Independence, of origin, 9
of path of integration, 83, §9, 90, 111, 114, 129, 130
Independent, linearly, 10, 15
Index, dummy or umbral, 167
free, 167
Inertial systems, 53
Initial point of a vector, 1
Inner multiplication, 169, 182
Imner product, 164, 182
Integral operator form for V, 107, 123
Integzrals, of vectors, 82-105
definite, 82
indefinite, 82
line, {see Line integrals)
ordinary, 82
surface, {(see Surface integrals)
theorems on, (see Integral thecrems)
volume, {gee Volume integrals)
Integral theorems, 107, 120, 121, 124, 125, 130,
{see also Stokes® theorem and Divergence theorem)
Integration, (see Integrals, of vectors)
Intrinsic derivative, 174, 202, 211
Invariance, 58, 59, 76, 77, 81, {see alsc Invariant)
Invariant, 58, 168, 190, {(see also Invariance)
Inverse of a matrix, 170
Irrotational field, 72, 73, 90

Jacobian, 79, 133, 146, 147, 148, 159, 161, 162, 175, 202-3
Kepler’s laws, 86, 8%, 102

Kinematics, 38, (se¢ also Dynamics and Mechanics)
Kinetic energy, 94, 204
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Kronecker delta, 168, 179, 180
Kronecker_’s symboel, 77, 208

Lagrangean, 206

Lagrange’s equations, 196, 205

Laplace’s equsation, 65, 127, 134
in parabolic cylindrical coordinates, 154, 155

Laplace transforms, 162

Laplacian operator (V7), 58, 64, 81, 200
in curvilinear coordinates, 137, 150, 1561
in e¢ylindrical coordinates, 153, 154, 201
in paraboli¢ cylindrical coordinates, 154, 155, 211
in spherical coordinates; 154, 201
invariance of, 81
tensor form of, 174, 200

Laws of vector algebra, 2, 18

Lemniscate, 132

Length, of a vector, 171, 172, 190

Light rays, 63

Light, velocity of, 81

Linearly dependent vectors, 10, 15

Line element, 170, 187-189

Line, equation of, 9, 12
parametric equations of, 12
sink, 13
sowce, 13
symmetric form for eguation of, 9

Line integrals, 82, 87-94, 111
circulation in terms of, 82, 131
evaluation of, 87-89, 111
Jreen’s theorem and evaluation of, 112
independence of path, 83, 89,90, 111,114,129,130
work expressed in terms of, 82, 88

Lorentz-Fitzgerald contraction, 213

Loreniz transformation, 213

Magnitude, of a vectar, 1
Main diagonsal, 169
Mapping, 162
Matrices, 189, 170, 185, 186, (see also Matrix)
addition of, 170
conformable, 170
equality of, 170
operations with, 170
Matrix, 73, 169, (see also Matrices)
algebra, 170
column, 169
determinant of, 170, 209
elements of, 169
inverse of, 170, 209, 210
main or prineipal diagonal of, 169
null, 169
order of, 169
principal diagonal of, 169
tow, 169
singular, 170
sguare, 169
transpose of, 170, 210
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Maxwell’s equations, 72, 81
in tensor form, 206
Mechanics, 38, 56, (see also Dynamics)
fluid, 82
Metric coefficients, 148
Metrie form, 148
Metrie tensor, 170, 191, 187-189
Mized tensor, 167, 168
Moebius strip, 99 .
Moment of force, 25, 26, 50
Momentum, 38
angular, 50, 51, 56
Motion, absolute, 53
Motion, of flaid, (see Fiuid motion}
of planets, 85-87
Moving and fixed systems, observers in, 51-53
Moving trihedral, 38
Multiplication, (see Produci}
Multiply-connected region, 110, 112-114

Wabla, (see Del)
Megative direction, 89
Newton’s law, 38, 50, 53
in tensor form, 203
of universel gravitation, B8
Normal plane, 38, 48
Normal, principal, 38, 45, 4%, 48, 50
bi-, 38, 45, 47, 48
Mormal, to & surface, 49, 50, 56, 61
positive or outward drawn, 49, 83
Null matrix, 169
Nuli vector, 2

Cblate spheroidal coordinates, 140, 145, 160, 161
Operations, with tensers, 16§, 178-184
Operator, del, 57, (see also Del)
Laplacian, {see Laplacian operator)
time derivative, in fixed and moving systems,
51, 52
Order, of a matrix, 169
of a tenaor, 167
Crientable surface, 99
QOrigin, of a vector, 1
independence of vector equation on, 9
Orthocenter, 33
Orthogonal coordinates, special, 137-141
bipolar, 140, 160 .
cylindrical, 137, 138, (see Cylindrical coordinates)
ellipsoidal, 140, 160
elliptic cylindrical, 139, 155, 160, 161, 211
oblate sphereoidal, 140, 145, 160, 161
parabolic cylindrical, 138, (see alsc Parzbolic
eylindrical coordinates)
paraboloidal, 139, 160, 161, 211
prolate spheroidal, 139, 180, 161
spherical, 137, 138, (see Spherical coordinates)
toroidal, 141

Orthogonal curvilinear coordinate systems, 49, 135,
191
special, 137-141
Crthogonal transformation, 59
Osculating plane, 38, 48
Outer multiplication, 189
Outer product, 169
Outward drawn normal, 49, 83

Parabola, 87, 138
Parabelic cylindrical coordinates, 138, 144, 145, 154,
155, 160, 161, 211
are length in, 144
Christoffel’s symbols in, 211
curl In, 161
divergence in, 161
gradient in, 1681, 211
Jacobian in, 161
Laplacian in, 154, 165, 211
Schroedinger's equation In, 161
volume element in, 145
Paraboloidal coordinates, 139, 160, 161, 211
Parallelopram, area of, 17, 24
Parallelograimn law of vector addition, 2, 4
Parametric equations, of a curve, 39, 40
of 4 line, 12
of a surface, 48, 49
Periads, of planets, 102
Permutation symbols and tensors, 173, 174, 211
Physical components, 172, 200, 201, 205, 211
Plane, distance from origin to, 21
equation of, 15, 21, 28
normal, 38, 48
osculating, 38, 48
rectifying, 38, 48
tangent, 49, 50, 61
vector perpendicular to, 28
vectors in a, (see Coplanar veciors)
Planets, motion of, 85-87
Point function, scalar and vector, 3
Poisson’s equation, 134
Polar cootdinates, 98
Ppsition vector, 3
Pogitive direction, 8%, 106, 113
Posgitlve normal, 83
Potential energy, 94
Potential, scalar, 73, 81, 83, 91, 92
vector, 81
Prineipal diagonal, 169
Principal normal, 38, 45, 47, 48, 50
Product, box, 17
cross, {see Cross product)
dot, {see Dot product)
inner, 169, 182
of a vector by a scalar, 2
of determinants, 159
of matrices, 170
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Product, Schroedinger’s equation, 161
of tensors, 169 Simple closed curve, 82, 106
outer, 169, 181 area bounded by, 111
scalar, 152, (see also Dot product) Simply-connected region, 110, 113, 114
vector, {see Cross product) Sines, law of, for plane triangles, 25
Projectile, 102 for spherical friangles, 28, 20
Projection, of a vector, 18, 20 Sipgular matrix, 170
of surfaces, 95, 08 Singular points, 141
Prolate spheroidal coordinates, 139, 160, 161 Sink, 13, 67, 120
Proper vector, 2 Bink field, 13, (see also Sink)
Pythagorean theorem, 10 Solenoidal field, 67, 73, 120, 126
Solid angle, 124, 125
Quadratie form, fundamental, 148 Sound rays, 63
Qunantum mechanics, 161 Source, 13, 67, 120
GQuotient law, 169, 184 Source field, 13, (see also Source)
Space curves, 35
Radiuns, of curvature, 38, 45, 46, 50 acceleration along, 35, 39, 40, 50, 56
of torsion, 38, 45 arc length of, 37, 58, 136, 148
Radius vector, 2 binormal of, 38, 45, 47, 48
Rank, of a tensor, 167 curvature of, 38, 45, 47, 113
Rarnk zero tensor, 168 principal normal of, 38, 45, 47, 48, 50
Real forces, b3 radius of curvature of, 38, 45, 46, 50
Raciprocal sets or systems of vectors, 17, 30, 31 radius of torsion of, 38, 45
34, 135, 147 tangent to, 37, 38, 46, 45, 47, 48, 50
Reciprocal tensors, 171 Space integrals, (see Volume integrals)
Rectangular component vectors, 3 - Spaces, Euclidean, 170
Reectangular coordinate systems, 2 Riemannian, 171
Rectifying plane, 38, 48 Space, N dimensional, 166
Region, multiply-connected, 110, 112-114 Special theory of relativity, 213
simply-connected, 110, 113, 114 Speed, 4
Relative acceleration, 53 angular, 26, 43, 52
Relative tensor, 175, 202, 203, 212 Sphetieal coardinates, 137, 138, 141, 147, 180, 161
Relative velocity, 52 arc length in, 144
Relativity, theory of, 148, 207, 213 Christoffel’s symhols in, 195, 211
Resultant of vectors, 2, 4, 5, 6, 10 conjugate metrie tensor in, 189
Riemann-Christoffel tensor, 207, 212 contimity equation in, 212
Riemannian space, 171, 172 covariant components in, 177, 178
geodesics in, 172, 196, 197 curl in, 154
Right-handed coordinate systems, 2, 3 divergence in, 161, 200, 201
localized, 38 geodesics in, 211
Rigid body, motion of, 59 gradient in, 161
velocity of, 26, 33 heat eguation in, 161
Rot, (see Curl) Jacobian in, 181
Rotating coordinate systems, 51, 52 Laplacian in, 154, 201
Rotation, invariance under, (see Invariance) metric tensor in, 187
of axes, 58, 76, T7 velocity and acceleration in, 180, 212
pure, 59 volume element in, 144, 145
Row matrix or vector, 169 Spheroldal coordinates, oblate, 140, 145, 160, 161
prolate, 1389, 160, 161
Secalar, 1, 4, 168 Stationary scalar field, 3
field, 3, 12, 168 Stationary-state, (see Steady-state)
function of position, 3 Steady-state, heat flow, 127
point function, 3 scalar field, 3
potential, T3, 81, 83, 91, 92 vector field, 3
produet, 182, (see also Dot product) Stokes’ theorem, 106, 110, 127-131
triple products, (see Triple products) Green’s theorem as special case of, 110
variable, 35 proof of, 127-129

Scale factors, 135 tensor form of, 212
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Subtraction, of tensors, 169
of vectors, 2
Summation convention, 187, 175, 176, 207
Superscripts, 166
Surface, area of, 104, 105, 162
Surface curvilinear coordinates, 43, 49, 58, 155
arc length in, 56, 148
Surface integrals, 83, 94-99
defined ag limit of a sum, 94, 95
evaluation of, 83
Surfaces, 37
angle hetween, 63
arc length on, 56
coordinate, 135
one-sided, 99
orientable, 99
outward drawn normal to, 83
two-sided, 83
Symmetiric form, of eguation of a line, 9

Tangent, to space curve, 37, 38, 40, 45, 47, 48, 50
Tangent plane, 49, 530, 61
Tensor analysis, 73, 137, 158, 166-217
Tensor, absolute, 175
associated, 171, 196, 191, 210
Cartesian, 210
coningate, 171
contravariant, {see Contravariant components)
covariant, (see Covariant components)
curvature, 207
density, 175, 203
field, 168
fundamental, 171
metric, 170
inixed, 167, 168
order of, 167
rank of, 167
reciprocal, 171
relative, 175, 202, 203, 212
skew-symmetric, 168, 169
symmetric, 168
Tensors, fundamental operations with, 169, 179=134
Terminal peint or Terminus, I, 2, 5,11
Thermal conductivity, 126
Toroidal coordinates, 141
Torgue, 50, 51
Torsion, 38, 45, 47, 213
radius of, 38, 45
Transformation, affine, 59, 210, 213
of coordinates, 58, 59, 76, 135, 166
orthogonal, 59
Translation, 59
Transpose, of a mafrix, 170, 210
Triad, 38
Triadie, 73
Triangle, area of, 24, 25
Triangle law of vector addition, ¢4
Trihedral, moving, 38

INDEX

Triple products, 17, 26-31
Twisted cubic, 55

Umbral index, 167
Unit dyads, 73
Unit mairix, 169
Unit vectorsz, 2, 11
rectangular, 2, 3

Variaple, 35, 38
Vector, area, 25, 83
column, 169
equations, 2, O
field, 3, 12, 13, 188
function of position, 3
magnitude of a, 1, 10
nnll, 2
operator V, {see Del)
point fanction, 3
position, 3
potential, 81
product, {see Cross product)
radius, 3
tow, 169
time derivative of a, 51, 52
triple product, (see Triple products)
Vectors, 1, 4
addition of, 2, 4
algebra of, 1, 2
analytical representation of, I
angle between, 19, 172, 190
base, 7, 8, 138
collinear, (see Collinear vectors)
component, 3, 7, 8
confravariant components of, 136, 1586, 157, 167
coplanar, {see Coplanar vectors)
covariant components of, 136, 155, 158, 167
differentiation of, 35-56
equality of, 1
graphical representation of, 1, 4
initial point of, 1
origin of, 1
reciprocal, 17
resultant of, 2, 4, 5, 6, 10
terminal point of, 1
terminus of, 1
unit, 2
unitary, 136
Velocity, along a space curve, 35, 39, 40
angular, 26, 43, 52
areal, 85, 86
linear, 28
of a fleid, 179
of a particle, 42, 52, 203, 204
of light, 81
relative to fixed and moving observers, 52, 53
Volume, elements of, 136, 137, 159
in curvilinear coordinates, 138, 137
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Volume, - . Wave equation, 72
in general coordinates, 159 ) Weight, of a tensor, 175
of parallelepiped, 17, 26 Work, 21, 82, 88, 89, 90, 91

Volume integrals, 83, 89-101 as a line integral, 88, 89, 90, 91
defined as limit of a sum, 99, 100 :
Vortex field, 72 . Zero vactor, 2
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